如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A(-4,2)、B(2,n)兩點,且與x精英家教網(wǎng)軸交于點C.
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達式;
(2)求點C的坐標和△AOB的面積.
分析:(1)先把A(-4,2)代入反比例函數(shù)的解析式為y=
k
x
,求出k的值進而求出反比例函數(shù)的解析式,由B點在此反比例函數(shù)上可求出此點坐標,把A、B兩點坐標代入y=ax+b即可求出一次函數(shù)的解析式;
(2)根據(jù)直線與坐標軸交點的特點可求出C點坐標,再由A、B兩點的坐標及S△AOB=S△AOC+S△BOC即可解答.
解答:精英家教網(wǎng)解:(1)設(shè)反比例函數(shù)的解析式為y=
k
x
,因為經(jīng)過A(-4,2),
∴k=-8,∴反比例函數(shù)的解析式為y=
-8
x

因為B(2,n)在y=
-8
x
上,∴n=
-8
2
=-4,∴B的坐標是(2,-4)
把A(-4,2)、B(2,-4)代入y=ax+b,得
-4a+b=2
2a+b=-4
,解得:
a=-1
b=-2
,∴y=-x-2.
故答案為:y=
-8
x


(2)y=-x-2中,
∵當y=0時,x=-2,
∴直線y=-x-2和x軸交點是C(-2,0),
∴OC=2,
∴S△AOB=
1
2
×2×4+
1
2
×2×2=6.
點評:本題考查的是一次函數(shù)與反比例函數(shù)的交點問題,熟知用待定系數(shù)法求一次函數(shù)及反比例函數(shù)的解析式及三角形的面積公式是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B.一次函數(shù)的圖象分別交x軸、y軸于點C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點D的坐標;
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點A.當y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點
A(m,2)
(1)求點A的坐標及反比例函數(shù)的表達式;
(2)結(jié)合圖象直接比較:當x>0時,y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點A、點B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點C,CD⊥x軸于點D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習冊答案