【題目】如圖,長方形ABCD中,AB=4cm,BC=3cm,點(diǎn)E是CD的中點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1cm的速度沿A→B→C→E 運(yùn)動(dòng),最終到達(dá)點(diǎn)E.若點(diǎn)P運(yùn)動(dòng)的時(shí)間為x秒,那么當(dāng)x= _________時(shí),△APE的面積等于

【答案】或6

【解析】分析:分為三種情況:畫出圖形,根據(jù)三角形的面積求出每種情況即可.

詳解:①如圖1,

當(dāng)P在AB上時(shí),
∵△APE的面積等于4,
x3=4,
x=;
②當(dāng)P在BC上時(shí),

∵△APE的面積等于4,
S長方形ABCD-SCPE-SADE-SABP=4,
3×4-(3+4-x)×2-×2×3-×4×(x-4)=4,
x=6;
③當(dāng)P在CE上時(shí),

(4+3+2-x)×3=4,
x=<3+4,此時(shí)不符合;
故答案為: 6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年,新疆某次足球聯(lián)賽規(guī)定每隊(duì)勝一場得3分,平一場得1分,負(fù)一場得0分,某隊(duì)前14場保持不敗,共得32分,設(shè)該隊(duì)平了x場,根據(jù)題意列方程得:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雅安地震發(fā)生后,全國人民抗震救災(zāi),眾志成城,值地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)

車型

汽車運(yùn)載量(噸/輛)

5

8

10

汽車運(yùn)費(fèi)(元/輛)

400

500

600

(1)全部物資可用甲型車8輛,乙型車5輛,丙型車 來運(yùn)送.

(2)若全部物資都用甲、乙兩種車型來運(yùn)送,需運(yùn)費(fèi)8200元,問分別需甲、乙兩種車型各幾輛?

(3)為了節(jié)省運(yùn)費(fèi),該地政府打算用甲、乙、丙三種車型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文文和彬彬在證明有兩個(gè)角相等的三角形是等腰三角形這一命題時(shí),畫出圖形,寫出已知,求證(如圖),她們對(duì)各自所作的輔助線描述如下:

文文過點(diǎn)ABC的中垂線AD,垂足為D”

彬彬:ABC的角平分線AD”

數(shù)學(xué)老師看了兩位同學(xué)的輔助線作法后,說:彬彬的作法是正確的,而文文的作法需要訂正.

1)請(qǐng)你簡要說明文文的輔助線作法錯(cuò)在哪里;

2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,D為△ABC的邊AB的延長線上一點(diǎn),過DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:
(2)先化簡,再求值: ,其中x=2tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.1的平方根是﹣1

B.4的平方根是2

C.如果一個(gè)數(shù)有平方根,那么這個(gè)數(shù)的平方根一定有兩個(gè)

D.任何一個(gè)非負(fù)數(shù)的立方根都是非負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O1、⊙O2相交于P、Q兩點(diǎn),其中⊙O1的半徑r1=2,⊙O2的半徑r2= .過點(diǎn)Q作CD⊥PQ,分別交⊙O1和⊙O2于點(diǎn)C、D,連接CP、DP,過點(diǎn)Q任作一直線AB交⊙O1和⊙O2于點(diǎn)A、B,連接AP、BP、AC、DB,且AC與DB的延長線交于點(diǎn)E.
(1)求證: ;
(2)若PQ=2,試求∠E度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(﹣1,0),B(4,0),點(diǎn)C在y軸的正半軸上,且∠ACB=90°,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),其頂點(diǎn)為M.

(1)求拋物線y=ax2+bx+c的解析式;
(2)試判斷直線CM與以AB為直徑的圓的位置關(guān)系,并加以證明;
(3)在拋物線上是否存在點(diǎn)N,使得SBCN=4?如果存在,那么這樣的點(diǎn)有幾個(gè)?如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案