如圖(1)是四邊形紙片ABCD,其中∠B=120°,∠D=50度.若將其右下角向內(nèi)折出△PCR,恰使CP∥AB,RC∥AD,如圖(2)所示,則∠C=    度.
【答案】分析:根據(jù)折疊前后圖形全等和平行線,先求出∠CPR和∠CRP,再根據(jù)三角形內(nèi)角和定理即可求出∠C.
解答:解:因為折疊前后兩個圖形全等,故∠CPR=∠B=×120°=60°,
∠CRP=∠D=×50°=25°;
∴∠C=180°-25°-60°=95°;∠C=95度;
故應(yīng)填95.
點評:折疊前后圖形全等是解決折疊問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點A與點C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個重合的矩形,其中一個是內(nèi)接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個斜三角形,同時滿足下列條件:①折成的組合矩形為正方形;②頂點都在格點(各小正方形的頂點)上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時,一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在6×6的方格紙中,每個小方格都是邊長為1的正方形,我們稱每個小正方形的頂點為格點,以格點為頂點的圖形稱為格點圖形,如圖①中的三角形是格點三角形.
(1)請你在圖①中畫一條直線將格點三角形分割成兩部分,將這兩部分重新拼成兩個不同的格點四邊形,并將這兩個格點四邊形分別畫在圖②,圖③中;
(2)直接寫出這兩個格點四邊形的周長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在6×6的方格紙中,每個小方格都是邊長為1的正方形,我們稱每個小正方形的頂點為格點,以格點為頂點的圖形稱為格點圖形,如圖①中的三角形是格點三角形.
(1)請你在圖①中畫一條直線將格點三角形分割成兩部分,將這兩部分重新拼成三個不同的格點四邊形,并將這三個格點四邊形分別畫在圖②,圖③,圖④中;并標出名稱.
(2)直接寫出這三個格點四邊形的周長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一張矩形紙ABCD按圖示折疊:
精英家教網(wǎng)
(1)求證:四邊形EFGB是平行四邊形;
(2)若BC=11cm,AB=4cm,要使四邊形EFGB為菱形,則剪去的△ABE的邊AE應(yīng)為多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為“格點多邊形”.如圖(一)中四邊形ABCD就是一個“格點四邊形”.
(1)作出四邊形ABCD關(guān)于直線BD對稱的四邊形A′B′C′D′;
(2)求圖(一)中四邊形ABCD的面積;
(3)在圖(二)方格紙中畫一個格點三角形EFG,使△EFG的面積等于四邊形ABCD的面積且△EFG為軸對稱圖形.

查看答案和解析>>

同步練習冊答案