如圖,D是△ABC的邊AB上一點,CN∥AB,DN交AC于點M,若MA=MC.
(1)求證:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四邊形ADCN的面積.
(1)證明:∵CN∥AB,∴∠DAC=∠NCA,即∠DAM=∠NCM。
在△AMD和△CMN中,∵∠DAM=∠NCM,MA=MC, ∠AMD∠CMN,
∴△AMD≌△CMN(ASA)!郃D=CN,
又AD∥CN,∴四邊形ADCN是平行四邊形。
∴CD=AN。
(2)解:∵AC⊥DN,∠CAN=30°,MN=1,∴AN=2MN=2,。
∴S△AMN。
∵四邊形ADCN是平行四邊形,
∴S四邊形ADCN=4S△AMN=2。
【解析】
試題分析:(1)利用“平行四邊形ADCN的對邊相等”的性質(zhì)可以證得CD=AN;
(2)根據(jù)銳角三角函數(shù)定義求得AN=2MN=2, AM=,則S四邊形ADCN=4S△AMN=2。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com