【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,現(xiàn)同時(shí)將點(diǎn),分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn),的對(duì)應(yīng)點(diǎn),連接,

(1)求點(diǎn),的坐標(biāo)及四邊形的面積

(2)軸上是否存在一點(diǎn),連接,,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo),若不存在,試說明理由.

(3)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),連接,,當(dāng)點(diǎn)上移動(dòng)時(shí)(不與,重合)給出下列結(jié)論:

的值不變,② 的值不變,其中有且只有一個(gè)是正確的,請(qǐng)你找出這個(gè)結(jié)論并求其值.

【答案】1,;(2)(0,8)或(0,-8);(3)①;1.

【解析】

1)根據(jù)向右平移橫坐標(biāo)加,向上平移縱坐標(biāo)加寫出點(diǎn)C、D的坐標(biāo)即可,再根據(jù)平行四邊形的面積公式列式計(jì)算即可得解;(2)設(shè)點(diǎn)PAB的距離為h,根據(jù)已知條件SPAB=2S四邊形ABDC求得h的值,由此即可求得點(diǎn)P的坐標(biāo);(3)①是正確的結(jié)論,過點(diǎn)PPQCD,即可得PQABCD,由平行線的性質(zhì)可得∠DCP=∠CPQ,∠BOP=∠OPQ,所以∠DCP+∠BOP=∠CPQ +OPQ =∠CPO,由此即可得.

1)∵點(diǎn)A-10),B3,0)分別向上平移2個(gè)單位,再向右平移1個(gè)單位,

∴點(diǎn)C、D的坐標(biāo)分別為(0,2),(4,2),

S四邊形ABDC=4×2=8

2)在y軸上存在一點(diǎn)P,使SPAB=2S四邊形ABDC.理由如下:

設(shè)點(diǎn)PAB的距離為h,

SPAB=×AB×h=2h

SPAB=2S四邊形ABDC,得2h=16

解得h=8,

P08)或(0,-8).

3)①是正確的結(jié)論,過點(diǎn)PPQCD,

ABCD,

PQABCD(平行公理的推論)

∴∠DCP=∠CPQ,∠BOP=∠OPQ,

∴∠DCP+∠BOP=∠CPQ +OPQ =∠CPO,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,點(diǎn)E、F分別在邊CD、AB上,且DE=BF,ECA=FCA.

(1)求證:四邊形AFCE是菱形;

(2)若AB=8,BC=4,求菱形AFCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)準(zhǔn)備進(jìn)一批兩種不同型號(hào)的衣服,已知購(gòu)進(jìn)A種型號(hào)衣服9件,B種型號(hào)衣服10件,則共需1810元;若購(gòu)進(jìn)A種型號(hào)衣服12件,B種型號(hào)衣服8件,共需1880元;已知銷售一件A型號(hào)衣服可獲利18元,銷售一件B型號(hào)衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號(hào)衣服不多于28件.

(1)求A、B型號(hào)衣服進(jìn)價(jià)各是多少元?

(2)若已知購(gòu)進(jìn)A型號(hào)衣服是B型號(hào)衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡(jiǎn)述購(gòu)貨方案.

【答案】(1)A種型號(hào)的衣服每件90元,B種型號(hào)的衣服100元;(2)有三種進(jìn)貨方案,具體見解析.

【解析】試題分析:(1)等量關(guān)系為:A種型號(hào)衣服9件×進(jìn)價(jià)+B種型號(hào)衣服10件×進(jìn)價(jià)=1810,A種型號(hào)衣服12件×進(jìn)價(jià)+B種型號(hào)衣服8件×進(jìn)價(jià)=1880;

(2)關(guān)鍵描述語(yǔ)是:獲利不少于699元,且A型號(hào)衣服不多于28件.關(guān)系式為:18×A型件數(shù)+30×B型件數(shù)≥699,A型號(hào)衣服件數(shù)≤28.

試題解析:(1)設(shè)A種型號(hào)的衣服每件x元,B種型號(hào)的衣服y元,

則:

解之得.

答:A種型號(hào)的衣服每件90元,B種型號(hào)的衣服100元;

(2)設(shè)B型號(hào)衣服購(gòu)進(jìn)m件,則A型號(hào)衣服購(gòu)進(jìn)(2m+4)件,

可得:,

解之得192m12,

∵m為正整數(shù),

∴m=10、11、12,2m+4=24、26、28.

答:有三種進(jìn)貨方案:

(1)B型號(hào)衣服購(gòu)買10件,A型號(hào)衣服購(gòu)進(jìn)24件;

(2)B型號(hào)衣服購(gòu)買11件,A型號(hào)衣服購(gòu)進(jìn)26件;

(3)B型號(hào)衣服購(gòu)買12件,A型號(hào)衣服購(gòu)進(jìn)28件。

點(diǎn)睛:點(diǎn)睛:本題主要考查二元一次方程組和一元一次不等式組的實(shí)際問題的應(yīng)用,解題的關(guān)鍵是讀懂題目的意思,根據(jù)題目給出的條件,設(shè)出未知數(shù),分別找出甲組和乙組對(duì)應(yīng)的工作時(shí)間,找出合適的等量關(guān)系,列出方程組,再求解.

型】解答
結(jié)束】
21

【題目】如圖,銳角ABC內(nèi)接于O,若O的半徑為6,sinA=,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC、BD是它的對(duì)角線,∠ABC=ADC=90°,BCD是銳角.

(1)若BD=BC,證明:sinBCD=

(2)若AB=BC=4,AD+CD=6,求的值.

(3)若BD=CD,AB=6,BC=8,求sinBCD的值.

(注:本題可根據(jù)需要自己畫圖并解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面的三角形中:①△ABC中,∠C=A-∠B;②△ABC中,∠A:∠B:∠C=123;③△ABC中,abc=51213; ④△ABC中,三邊長(zhǎng)分別為;其中,直角三角形的個(gè)數(shù)有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A110°,E,F分別是邊ABBC的中點(diǎn),EPCD于點(diǎn)P,則∠FPC=( 。

A. 35°B. 45°C. 50°D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即y=2x1

1)在上面規(guī)定下,拋物線的頂點(diǎn)坐標(biāo)為   ,伴隨直線為   ,拋物線與其伴隨直線的交點(diǎn)坐標(biāo)為      

2)如圖,頂點(diǎn)在第一象限的拋物線與其伴隨直線相交于點(diǎn)AB(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸交于點(diǎn)CD

①若∠CAB=90°,求m的值;

②如果點(diǎn)Px,y)是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),PBC的面積記為S,當(dāng)S取得最大值時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】騰飛中學(xué)在教學(xué)樓前新建了一座騰飛雕塑(如圖①).為了測(cè)量雕塑的高度,小明利用三角板測(cè)得雕塑頂端A點(diǎn)的仰角為30°,底部B點(diǎn)的俯角為45°,小華在五樓找到一點(diǎn)D,利用三角板測(cè)得A點(diǎn)的俯角為60°(如圖②).若已知CD10米,請(qǐng)求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)=1.73).

查看答案和解析>>

同步練習(xí)冊(cè)答案