【題目】已知二次函數(shù)y=x2+bx+c的圖象過(guò)點(diǎn)A(﹣3,0)和點(diǎn)B(1,0),且與y軸交于點(diǎn)C,D點(diǎn)在拋物線(xiàn)上且橫坐標(biāo)是﹣2.
(1)求拋物線(xiàn)的解析式;
(2)拋物線(xiàn)的對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值.
【答案】
(1)
解:將A(﹣3,0),B(1,0)代入y=x2+bx+c,
得 ,
解得
∴y=x2+2x﹣3
(2)
解:∵y=x2+2x﹣3=(x+1)2﹣4
∴對(duì)稱(chēng)軸x=﹣1,
又∵A,B關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),
∴連接BD與對(duì)稱(chēng)軸的交點(diǎn)即為所求P點(diǎn).
過(guò)D作DF⊥x軸于F.將x=﹣2代入y=x2+2x﹣3,
則y=4﹣4﹣3=﹣3,
∴D(﹣2,﹣3)
∴DF=3,BF=1﹣(﹣2)=3
Rt△BDF中,BD=
∵PA=PB,
∴PA+PD=BD= .
故PA+PD的最小值為 .
【解析】(1)把A(﹣3,0)和點(diǎn)B(1,0),代入y=x2+bx+c,建立關(guān)于b,c的二元一次方程組,求出b,c即可;(2)先求出拋物線(xiàn)的對(duì)稱(chēng)軸,又因?yàn)锳,B關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),所以連接BD與對(duì)稱(chēng)軸的交點(diǎn)即為所求P點(diǎn).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,弧AE等于弧AB,BE分別交AD、AC于點(diǎn)F、G.
(1)判斷△FAG的形狀,并說(shuō)明理由;
(2)若點(diǎn)E和點(diǎn)A在BC的兩側(cè),BE、AC的延長(zhǎng)線(xiàn)交于點(diǎn)G,AD的延長(zhǎng)線(xiàn)交BE于點(diǎn)F,其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)D為y軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線(xiàn)段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線(xiàn)DP的函數(shù)解析式;
(2)如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).
(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:△OAB,△EOF都是等腰直角三角形,∠AOB=900,中,∠EOF=900,連結(jié)AE、BF.
求證:(1) AE=BF;(2) AE⊥BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】威遠(yuǎn)人民商場(chǎng)準(zhǔn)備購(gòu)進(jìn)甲、乙兩種牛奶進(jìn)行銷(xiāo)售,若甲種牛奶的進(jìn)價(jià)比乙種牛奶的進(jìn)價(jià)每件少5元,其用90元購(gòu)進(jìn)甲種牛奶的數(shù)量與用100元購(gòu)進(jìn)乙種牛奶的數(shù)量相同.
(1)求甲種牛奶、乙種牛奶的進(jìn)價(jià)分別是多少元?
(2)若該商場(chǎng)購(gòu)進(jìn)甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,兩種牛奶的總數(shù)不超過(guò)95件,該商場(chǎng)甲種牛奶的銷(xiāo)售價(jià)格為49元,乙種牛奶的銷(xiāo)售價(jià)格為每件55元,則購(gòu)進(jìn)的甲、乙兩種牛奶全部售出后,可使銷(xiāo)售的總利潤(rùn)(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))超過(guò)371元,請(qǐng)通過(guò)計(jì)算求出該商場(chǎng)購(gòu)進(jìn)甲、乙兩種牛奶有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一幅長(zhǎng)20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2 .
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①2a+b=0;②a+b+c>0;③當(dāng)﹣1<x<3時(shí),y>0;④﹣a+c<0.其中正確的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=ax2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,AB=4,矩形OBDC的邊CD=1,延長(zhǎng)DC交拋物線(xiàn)于點(diǎn)E.
(1)求拋物線(xiàn)的解析式;
(2)如圖2,點(diǎn)P是直線(xiàn)EO上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線(xiàn)交直線(xiàn)EO于點(diǎn)G,作PH⊥EO,垂足為H.設(shè)PH的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為m,求l與m的函數(shù)關(guān)系式(不必寫(xiě)出m的取值范圍),并求出l的最大值;
(3)如果點(diǎn)N是拋物線(xiàn)對(duì)稱(chēng)軸上的一點(diǎn),拋物線(xiàn)上是否存在點(diǎn)M,使得以M,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線(xiàn),A是切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)D為AP的中點(diǎn),連結(jié)AC.求證:
(1)∠P=∠BAC
(2)直線(xiàn)CD是⊙O的切線(xiàn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com