【題目】(9分)為進一步推廣“陽光體育”大課間活動,某中學對已開設的A實心球,B立定跳遠,C跑步,D跳繩四種活動項目的學生喜歡情況進行調查,隨機抽取了部分學生,并將調查結果繪制成圖1,圖2的統計圖,請結合圖中的信息解答下列問題:
(1)請計算本次調查中喜歡“跑步”的學生人數和所占百分比,并將兩個統計圖補充完整;
(2)隨機抽取了5名喜歡“跑步”的學生,其中有3名女生,2名男生,現從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.
【答案】(1)60(人),40%,(2).
【解析】
試題(1)用A的人數除以所占的百分比,即可求出調查的學生數;用抽查的總人數減去A、B、D的人數,求出喜歡“跑步”的學生人數,再除以被調查的學生數,求出所占的百分比,再畫圖即可;
(2)用A表示男生,B表示女生,畫出樹形圖,再根據概率公式進行計算即可.
試題解析:解:(1)根據題意得:
15÷10%=150(名).
本項調查中喜歡“跑步”的學生人數是;150﹣15﹣45﹣30=60(人),
所占百分比是:×100%=40%,
畫圖如下:
(2)用A表示男生,B表示女生,畫圖如下:
共有20種情況,同性別學生的情況是8種,
則剛好抽到同性別學生的概率是=.
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有兩個實數根x1,x2.
(1)求實數k的取值范圍.
(2)是否存在實數k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個圖共有3個小正方形,第2個圖共有8個小正方形,第3個圖共有15個小正方形,第4個圖共有24個小正方形,…,照此規(guī)律排列下去,則第8個圖中小正方形的個數是( 。
A. 48B. 63C. 80D. 99
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經過點A,B,C,已知點A(﹣1,0),點C(0,3).
(1)求拋物線的表達式;
(2)P為線段BC上一點,過點P作y軸的平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)設E是拋物線上的一點,在x軸上是否存在點F,使得A,C,E,F為頂點的四邊形是平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,這是某班數學科代表根據他們班上學期的數學成績畫出的頻數分布直方圖,從這個圖中,請你回答下列問題:
(1)你認為他們班共有學生多少名?
(2)全班數學成績及格率(60分及以上為及格)為多少?
(3)在哪個分數段的學生最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:對角互補且有一組鄰邊相等的四邊形稱為奇異四邊形.
(1)概念理解:
在平行四邊形、菱形、矩形、正方形中,你認為屬于奇異四邊形的有__________ ;
(2)性質探究:
①如圖1,四邊形ABCD是奇異四邊形,AB=AD,求證:CA平分∠BCD;
②如圖2,四邊形ABCD是奇異四邊形,AB=AD,∠BCD=2α,試說明:cosα=;
(3)性質應用:
如圖3,四邊形ABCD是奇異四邊形,四條邊中僅有BC=CD,且四邊形ABCD的周長為6+2,∠BAC=45°,AC=3,求奇異四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+5與y軸交于點A,與x軸交于點B.拋物線y=﹣x2+bx+c過A、B兩點.
(1)點A,B的坐標分別是A ,B ;
(2)求拋物線的解析式;
(3)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一動點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A和點B的坐標分別為、,線段CD與AB關于點中心對稱,點A、B的對應點分別為點C、D
當時,畫出線段CD,并求四邊形ABCD的面積;
當______時,四邊形ABCD為正方形;
當時,連接PA、PB,在OA上有一點M,且,則點M的坐標為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com