【題目】如圖,五邊形ABCDE中,AB∥CD,∠1,∠2,∠3分別是∠BAE,∠AED,∠EDC的外角,則∠1+∠2+∠3=

【答案】180°
【解析】解:∵AB∥CD,
∴∠B+∠C=180°,
∴∠4+∠5=180°,
根據(jù)多邊形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3=360°﹣180°=180°.
所以答案是:180°.

【考點(diǎn)精析】本題主要考查了平行線的性質(zhì)和多邊形內(nèi)角與外角的相關(guān)知識(shí)點(diǎn),需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書香校園”活動(dòng)中,學(xué)校計(jì)劃開展四項(xiàng)活動(dòng):“A﹣國學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:

(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.

(2)學(xué)校現(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+ca ≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(40)之間.則下列結(jié)論:

ab+c0; 3a+b=0; b2=4acn); ④一元二次方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動(dòng).設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).

(1)AC=__cm,BC=__cm;

(2)當(dāng)t為何值時(shí),AP=PQ;

(3)當(dāng)t為何值時(shí),PQ=1cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程x26x+20,原方程可變形為( 。

A.x3211B.x327C.x+327D.x322

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角板的直角頂點(diǎn)O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.

(1)若∠COE=20°,則∠BOD=   ;若∠COE=α,則∠BOD=   (用含α的代數(shù)式表示)

(2)當(dāng)三角板繞O逆時(shí)針旋轉(zhuǎn)到圖2的位置時(shí),其它條件不變,試猜測(cè)∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一元二次方程x2﹣3x﹣1=0的兩根為m,n,則mn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長為5的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(﹣10),點(diǎn)B在拋物線y=ax2+ax﹣2上.

1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;

2)拋物線的關(guān)系式為 ;

3)設(shè)(2)中拋物線的頂點(diǎn)為D,求DBC的面積;

4)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°,到達(dá)AB′C的位置.請(qǐng)判斷點(diǎn)B′C′是否在(2)中的拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑等于8cm,圓心O到直線l上一點(diǎn)的距離為4cm,則直線l與⊙O的公共點(diǎn)的個(gè)數(shù)為( 。

A.0B.1C.2D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案