精英家教網 > 初中數學 > 題目詳情

【題目】如圖,矩形ABCD中,AD=1,CD=,連接AC,將線段AC、AB分別繞點A順時針旋轉90°AE、AF,線段AE與弧BF交于點G,連接CG,則圖中陰影部分面積為__.

【答案】

【解析】

由勾股定理得到AC=2,由三角函數的定義得到∠CAB=30°,根據旋轉的性質得到∠CAE=BAF=90°,求得∠BAG=60°,然后根據圖形的面積即可求得.

在矩形ABCD中,
AD=1,CD=,

AC=2,tanCAB=

∴∠CAB=30°
∵線段AC、AB分別繞點A順時針旋轉90°AEAF,
∴∠CAE=BAF=90°
∴∠BAG=60°,
AG=AB=,

∴陰影部分面積=SABC+S扇形ABG-SACG

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,某地的計價規(guī)則如下表:

計費項目

里程費

時長費

遠途費

單價

2/公里

/分鐘

1/公里

注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(含7公里)不收遠途費,超過7公里的,超出部分每公里收1元.

小李與小張分別從不同地點,各自同時乘坐滴滴快車,到同一地點相見,已知到達約定地點時他們的實際行車里程分別為7公里與9公里,兩人付給滴滴快車的乘車費相同.其中一人先到達約定地點,他等候另一人的時間等于他自己實際乘車時間,且恰好是另一人實際乘車時間的一半,則小李的乘車費為______元.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O的內接四邊形ABCD中,AB=3,AD=5,BAD=60°,點C為弧BD的中點,則AC的長是__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,將A(1,0)、B(0,2)、C(2,3)、D(3,1)用線段依次連接起來形成一個圖案(圖案).將圖案繞點O逆時針旋轉90°得到圖案;以點O為位似中心,位似比為1:2將圖案在位似中心的異側進行放大得到圖案

(1)在坐標系中分別畫出圖案和圖案

(2)若點D在圖案中對應的點記為點E,在圖案中對應的點記為點F,則SDEF=

(3)若圖案上任一點P(A、B除外)的坐標為(a,b),圖案中與之對應的點記為點Q,圖案中與之對應的點記為點R,則SPQR= .(用含有a、b的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】居民區(qū)內的廣場舞引起媒體關注,民勤電視臺為此進行過專訪報到.小平想了解本小區(qū)居民對廣場舞的看法,進行了一次抽樣調查,把居民對廣場舞的看法分為四個層次:.非常贊同;.贊同但要有時間限制;.無所謂;.不贊同.并將調查結果繪制了圖①和圖②兩幅不完整的統計圖.請你根據圖中提供的信息解答下列問題:

1)求本次被抽查的居民有多少人?

2)將圖①和圖②補充完整.

3)求圖②中層次所在扇形的圓心角度數.

4)估計該小區(qū)5000名居民中對廣場舞的看法表示贊同(包括層次和層次)的大約有多少人.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為圓外一點,AC交⊙O于點D,BC2=CDCA,弦ED=BDBEACF.

(1)求證:BC為⊙O切線;

(2)判斷BCF的形狀并說明理由;

(3)已知BC=15,CD=9,求tanADE的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】[問題情境]

我們知道數軸上的兩點A、B的距離|AB||xAxB|,那么如果已知平面上兩點P1(x1,y1),P2(x2,y2),如何求P1,P2的距離d(P1P2)呢?

下面我們就來研究這個問題.

問題 一般地,已知平面上兩點P1(x1,y1),P2(x2y2),如何求點P1P2的距離?

: 當x1≠x2,y1y2時,|P1P2||x2x1|

x1x2,y1≠y2時,|P1P2||y2y1|;

x1≠x2,y1≠y2時,如圖,

RtP1QP2中,由勾股定理知,

|P1P2|2|P1Q|2|QP2|2,所以d(P1,P2)|P1P2|.

歸納:兩點P1(x1,y1),P2(x2,y2)間的距離公式d(P1,P2)|P1P2|.

解決問題:

1)已知A2,-4),B-2,3),求dA,B

2)已知點A(1,2),B(3,4),C(5,0),求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數圖象的頂點在原點O,經過點A1);點F0,1)在y軸上.直線y=﹣1y軸交于點H

1)求二次函數的解析式;

2)點P是(1)中圖象上的點,過點Px軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;

3)當△FPM是等邊三角形時,求P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC,按如下步驟作圖:

(1)以A圓心,AB長為半徑畫弧;

(2)以C為圓心,CB長為半徑畫弧,兩弧相交于點D;

(3)連接BD,與AC交于點E,連接AD,CD.

①四邊形ABCD是中心對稱圖形;

②△ABC≌△ADC;

③AC⊥BD且BE=DE;

④BD平分∠ABC.

其中正確的是(

A.①② B.②③ C.①③ D.③④

查看答案和解析>>

同步練習冊答案