【題目】如圖,矩形ABCD中,AD=1,CD=,連接AC,將線段AC、AB分別繞點A順時針旋轉90°至AE、AF,線段AE與弧BF交于點G,連接CG,則圖中陰影部分面積為__.
科目:初中數學 來源: 題型:
【題目】滴滴快車是一種便捷的出行工具,某地的計價規(guī)則如下表:
計費項目 | 里程費 | 時長費 | 遠途費 |
單價 | 2元/公里 | 元/分鐘 | 1元/公里 |
注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(含7公里)不收遠途費,超過7公里的,超出部分每公里收1元. |
小李與小張分別從不同地點,各自同時乘坐滴滴快車,到同一地點相見,已知到達約定地點時他們的實際行車里程分別為7公里與9公里,兩人付給滴滴快車的乘車費相同.其中一人先到達約定地點,他等候另一人的時間等于他自己實際乘車時間,且恰好是另一人實際乘車時間的一半,則小李的乘車費為______元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,將A(1,0)、B(0,2)、C(2,3)、D(3,1)用線段依次連接起來形成一個圖案(圖案①).將圖案①繞點O逆時針旋轉90°得到圖案②;以點O為位似中心,位似比為1:2將圖案①在位似中心的異側進行放大得到圖案③.
(1)在坐標系中分別畫出圖案②和圖案③;
(2)若點D在圖案②中對應的點記為點E,在圖案③中對應的點記為點F,則S△DEF= ;
(3)若圖案①上任一點P(A、B除外)的坐標為(a,b),圖案②中與之對應的點記為點Q,圖案③中與之對應的點記為點R,則S△PQR= .(用含有a、b的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】居民區(qū)內的“廣場舞”引起媒體關注,民勤電視臺為此進行過專訪報到.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調查,把居民對“廣場舞”的看法分為四個層次:.非常贊同;.贊同但要有時間限制;.無所謂;.不贊同.并將調查結果繪制了圖①和圖②兩幅不完整的統計圖.請你根據圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖①和圖②補充完整.
(3)求圖②中“”層次所在扇形的圓心角度數.
(4)估計該小區(qū)5000名居民中對“廣場舞”的看法表示贊同(包括層次和層次)的大約有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為圓外一點,AC交⊙O于點D,BC2=CDCA,弦ED=弦BD,BE交AC于F.
(1)求證:BC為⊙O切線;
(2)判斷△BCF的形狀并說明理由;
(3)已知BC=15,CD=9,求tan∠ADE的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】[問題情境]
我們知道數軸上的兩點A、B的距離|AB|=|xA-xB|,那么如果已知平面上兩點P1(x1,y1),P2(x2,y2),如何求P1,P2的距離d(P1P2)呢?
下面我們就來研究這個問題.
問題 一般地,已知平面上兩點P1(x1,y1),P2(x2,y2),如何求點P1和P2的距離?
答: 當x1≠x2,y1=y2時,|P1P2|=|x2-x1|;
當x1=x2,y1≠y2時,|P1P2|=|y2-y1|;
當x1≠x2,y1≠y2時,如圖,
在Rt△P1QP2中,由勾股定理知,
|P1P2|2=|P1Q|2+|QP2|2,所以d(P1,P2)=|P1P2|=.
歸納:兩點P1(x1,y1),P2(x2,y2)間的距離公式d(P1,P2)=|P1P2|=.
解決問題:
(1)已知A(2,-4),B(-2,3),求d(A,B)
(2)已知點A(1,2),B(3,4),C(5,0),求證:△ABC是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數圖象的頂點在原點O,經過點A(1,);點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.
(1)求二次函數的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當△FPM是等邊三角形時,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC,按如下步驟作圖:
(1)以A圓心,AB長為半徑畫弧;
(2)以C為圓心,CB長為半徑畫弧,兩弧相交于點D;
(3)連接BD,與AC交于點E,連接AD,CD.
①四邊形ABCD是中心對稱圖形;
②△ABC≌△ADC;
③AC⊥BD且BE=DE;
④BD平分∠ABC.
其中正確的是( )
A.①② B.②③ C.①③ D.③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com