【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是
【答案】或
【解析】解:如圖作EF⊥BC于F,DN′⊥BC于N′交EM于點O′,此時∠MN′O′=90°,
∵DE是△ABC中位線,
∴DE∥BC,DE= BC=10,
∵DN′∥EF,
∴四邊形DEFN′是平行四邊形,∵∠EFN′=90°,
∴四邊形DEFN′是矩形,
∴EF=DN′,DE=FN′=10,
∵AB=AC,∠A=90°,
∴∠B=∠C=45°,
∴BN′=DN′=EF=FC=5,
∴ = ,∴ = ,∴DO′= .
當(dāng)∠MON=90°時,
∵△DOE∽△EFM,
∴ = ,∵EM= =13,∴DO= ,
故答案為 或 .
分兩種情形討論即可①∠MN′O′=90°,根據(jù) = 計算即可②∠MON=90°,利用△DOE∽△EFM,得 = 計算即可. 本題考查三角形中位線定理、矩形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會分類討論,學(xué)會添加常用輔助線,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某足球協(xié)會舉辦了一次足球聯(lián)賽,其記分規(guī)定及獎勵方案如下表:
勝一場 | 平一場 | 負一場 | |
積分 | 3 | 1 | 0 |
獎金(元/人) | 1300 | 500 | 0 |
當(dāng)比賽進行到第11輪結(jié)束(每隊均須比賽11場)時,A隊共積17分,每賽一場,每名參賽隊員均得出場費300元.設(shè)A隊其中一名參賽隊員所得的獎金與出場費的和為w(元).
(1)試說明w是否能等于11400元.
(2)通過計算,判斷A隊勝、平、負各幾場,并說明w可能的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,其面積標(biāo)記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2 , …,按照此規(guī)律繼續(xù)下去,則S9的值為( )
A.( )6
B.( )7
C.( )6
D.( )7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B、C).若線段AD長為正整數(shù),則點D的個數(shù)共有( )
A.5個
B.4個
C.3個
D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,直線AB∥CD,點P在兩平行線之間,寫出∠BAP、∠APC、∠DCP滿足的數(shù)量關(guān)系.
(2)如圖2,直線AB與CD相交于點E,點P為∠AEC內(nèi)一點,AQ平分∠EAP,CQ平分∠ECP,若∠AEC=40°,∠AQC=70°,求∠APC的度數(shù).
(3)如圖3,連接AD、CB交于點P,AQ平分∠BAD,CQ平分∠BCD,探究∠ABC、∠AQC、∠ADC滿足的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2﹣6x+c與x軸交于點A(﹣5,0)、B(﹣1,0),與y軸交于點C(0,﹣5),點P是拋物線上的動點,連接PA、PC,PC與x軸交于點D.
(1)求該拋物線所對應(yīng)的函數(shù)解析式;
(2)若點P的坐標(biāo)為(﹣2,3),請求出此時△APC的面積;
(3)過點P作y軸的平行線交x軸于點H,交直線AC于點E,如圖2.
①若∠APE=∠CPE,求證: ;
②△APE能否為等腰三角形?若能,請求出此時點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)地均勻的骰子六個面分別刻有1到6的點數(shù),擲兩次骰子,得到向上一面的兩個點數(shù),則下列事件中,發(fā)生可能性最大的是( 。
A.點數(shù)都是偶數(shù)
B.點數(shù)的和為奇數(shù)
C.點數(shù)的和小于13
D.點數(shù)的和小于2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校同學(xué)五一假期參加社團活動的情況,抽查了100名同學(xué),統(tǒng)計它們假期參加社團活動的時間,繪成頻數(shù)分布直方圖(如圖),則參加社團活動時間的中位數(shù)所在的范圍是( 。
A.4﹣6小時
B.6﹣8小時
C.8﹣10小時
D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com