【題目】如圖,正方形A1B1C1D1、A2B2C2D2……按照如圖所示的方式放置,點(diǎn)A1、A2、A3、…和點(diǎn)C1、C2、C3、…分別在直線y=kx+b(k>0)和x軸上,已知B1(1,1),B2(3,2),B3(7,4)則B2018的坐標(biāo)是_____

【答案】(22018﹣1,22017).

【解析】

根據(jù)矩形的性質(zhì)求出點(diǎn)A1、A2的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求出k、b,從而得到一次函數(shù)解析式,再根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出A4的坐標(biāo),然后求出B4的坐標(biāo),,最后根據(jù)點(diǎn)的坐標(biāo)特征的變化規(guī)律寫出Bn的坐標(biāo)即可.

∵點(diǎn)B1、B2的坐標(biāo)分別為(1,1),(3,2),

A1(0,1),A2(1,2),

∵點(diǎn)A1,A2在直線y=kx+b上,

,解得

y=x+1,

∵點(diǎn)B2的坐標(biāo)為(3,2),

∴點(diǎn)A3的坐標(biāo)為(3,4),

∴點(diǎn)B3的坐標(biāo)為(7,4),

∴點(diǎn)A4的坐標(biāo)為(7,8),

∴點(diǎn)B4坐標(biāo)為(15,8),

…,

Bn的橫坐標(biāo)是:2n-1,縱坐標(biāo)是:2n-1,

Bn的坐標(biāo)是(2n-1,2n-1),

B2018的坐標(biāo)是(22018-1,22017).

故答案為:(22018-1,22017).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點(diǎn),點(diǎn)N是AB邊上一動(dòng)點(diǎn),將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△OAB在直角坐標(biāo)系中的位置如圖,點(diǎn)A在第一象限,點(diǎn)B在x軸正半軸上,OA=OB=6,∠AOB=30°.

(1)求點(diǎn)A、B的坐標(biāo);
(2)開口向上的拋物線經(jīng)過原點(diǎn)O和點(diǎn)B,設(shè)其頂點(diǎn)為E,當(dāng)△OBE為等腰直角三角形時(shí),求拋物線的解析式;
(3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點(diǎn),已知MN=2 ,P(m,2)(m>0),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,已知點(diǎn)R(1,0),點(diǎn)K(4,4),直線y=- xb過點(diǎn)K , 分別交x軸、y軸于U、V兩點(diǎn),以點(diǎn)R為圓心, RK為半徑作⊙R , ⊙Rx軸于A.

(1)若二次函數(shù)的圖象經(jīng)過點(diǎn)A、B(-2,0)、C(0,-8),求二次函數(shù)的解析式;
(2)判斷直線UV與⊙R的位置關(guān)系,并說明理由;
(3)若動(dòng)點(diǎn)P、Q同時(shí)從A點(diǎn)都以相同的速度分別沿ABAC邊運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E , 使得以AE、Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出E點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax-2ax-3a(a<0)與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸與拋物線交于點(diǎn)P,與直線BC交于點(diǎn)M,且PM= AB.

(1)求拋物線的解析式;
(2)點(diǎn)K是x軸正半軸上一點(diǎn),點(diǎn)A、P關(guān)于點(diǎn)K的對(duì)稱點(diǎn)分別為 、 ,連接 、 ,若 ,求點(diǎn)K的坐標(biāo);
(3)矩形ADEF的邊AF在x軸負(fù)半軸上,邊AD在第二象限,AD=2,DE=3.將矩形ADEF沿x軸正方向平移t(t>0)個(gè)單位,直線AD、EF分別交拋物線于G、H.問:是否存在實(shí)數(shù)t,使得以點(diǎn)D、F、G、H為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文山州某中學(xué)為普遍提高學(xué)生身體素質(zhì),開展每天“陽光體育一小時(shí)”活動(dòng),根據(jù)實(shí)際情況決定開設(shè)A、籃球;B、乒乓球;C、羽毛球;D、足球四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,每名學(xué)生必須且只能選擇最喜愛的一項(xiàng)運(yùn)動(dòng)項(xiàng)目,并將調(diào)查結(jié)果制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問題:

(1)這次被抽查的學(xué)生有人;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)在統(tǒng)計(jì)圖中,“乒乓球”對(duì)應(yīng)扇形的圓心角是度;

(3)若該中學(xué)共有3600名學(xué)生,喜歡籃球的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山坡上有一顆樹AB,樹底部B點(diǎn)到山腳C點(diǎn)的距離BC為6 米,山坡的坡角為30°,小宇在山腳的平地F處測(cè)量這棵樹的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的頂點(diǎn)A在x軸正半軸上,頂點(diǎn)C的坐標(biāo)為(4,3),D是拋物線y=﹣x2+6x上一點(diǎn),且在x軸上方,則△BCD面積的最大值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)初二年級(jí)抽取部分學(xué)生進(jìn)行跳繩測(cè)試,并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳90~99次的為及格;每分鐘100~109次的為中等;每分鐘110~119次的為良好;每分鐘120次及以上的為優(yōu)秀。測(cè)試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖。請(qǐng)根據(jù)圖中信息,解答下列各題:

(1)參加這次跳繩測(cè)試的共有人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“中等”部分所對(duì)的圓心角的度數(shù)是;
(4)如果該校初二年級(jí)的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計(jì)數(shù)據(jù),請(qǐng)你估算出該校初二年級(jí)跳繩成績?yōu)椤皟?yōu)秀”的人數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案