【題目】如圖:在AOB的兩邊截取OA=OB,OC=OD,連接AD,BC交于點P,則下列結(jié)論中①△AOD≌△BOC,②△APC≌△BPD,點P在AOB的平分線上。 正確的是 填序號)

【答案】①②③

【解析】

試題分析:根據(jù)題中條件,由兩邊夾一角可得AOD≌△BOC,得出對應(yīng)角相等,又由已知得出AC=BD,可得APC≌△BPD,同理連接OP,可證AOP≌△BOP,進而可得出結(jié)論.

OA=OB,OC=OD,O為公共角,

∴△AOD≌△BOC,

∴∠A=B,

APC=BPD,

∴∠ACP=BDP,

OA-OC=OB-OD,即AC=BD,

∴△APC≌△BPD,

AP=BP,

連接OP,

即可得AOP≌△BOP,得出AOP=BOP

PAOB的平分線上.

故題中結(jié)論都正確.

故答案為:①②③

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】乘法公式的探究及應(yīng)用.

(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);

(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);

(3)比較圖1、圖2陰影部分的面積,可以得到公式

(4)運用你所得到的公式,計算下列各題:

①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機,某商店決定購進A、B兩種藝術(shù)節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.

(1)求購進A、B兩種紀念品每件各需多少元?

(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?

(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為(4,0),C點的坐標為(0,5),點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的路線移動(即:沿著長方形移動一周)

(1)寫出點B的坐標      );

(2)當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標;

(3)在移動過程中,當點Px軸距離為4個單位長度時,求點P移動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課本例題

已知:如圖,AD的角平分線,,,垂足分別為E、F.求證:AD垂直平分EF

小明做法

證明:因為AD的角平分線,,,所以

理由是:“角平分線上的點到這個角的兩邊的距離相等”.

因為

所以AD垂直平分EF

理由是:“到線段兩個端點距離相等的點在這條線段的垂直平分線上”.

老師觀點

老師說:小明的做法是錯誤的

請你解決

指出小明做法的錯誤;

正確、完整的解決這道題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC 中,∠C=90°,AB 的中垂線交直線 BC 于 D,若∠BAD﹣∠DAC=22.5°,則∠B 的度數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CDEF交于點O,OG平分∠BOFCDEF,∠AOE=64°,求∠AOF,∠DOG的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電視臺走基層欄目的一位記者乘汽車赴320km外的農(nóng)村采訪,全程的前一部分為高速公

路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y單位:km與時間x單位:h之間的關(guān)系如圖所示,則下列結(jié)論正確的是( )

A.汽車在高速公路上的行駛速度為100km/h

B.鄉(xiāng)村公路總長為90km

C.汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D.該記者在出發(fā)后5h到達采訪地

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器公司計劃裝運甲、乙、丙三種家電到農(nóng)村銷售(規(guī)定每輛汽車按規(guī)定滿載,且每輛汽車只能裝同一種家電).下表所示為裝運甲、乙、丙三種家電的臺數(shù)及利潤.

每輛汽車能裝運的臺數(shù)

40

20

30

每臺家電可獲利潤(萬元)

0.05

0.07

0.04

(1)若用8輛汽車裝運乙、丙兩種家電190臺到A地銷售,問裝運乙、丙的汽車各多少輛.

(2)計劃用20輛汽車裝運甲、乙、丙三種家電720臺到B地銷售如何安排裝運,可使公司獲得36.6萬元的利潤?

查看答案和解析>>

同步練習冊答案