【題目】如圖,在某海上觀測點B處觀測到位于北偏東30°方向有一艘救船A,搜救船A最大航速50海里/時,AB=52海里,在位于觀測點B的正東方向,搜救船A的東南方向有一失事漁船C,由于當(dāng)天正值東南風(fēng),失事漁船C以2海里/時的速度向西北方向漂移,若不考慮大風(fēng)對搜救船A的航線和航速的影響,求失事漁船獲救的最快時間.
【答案】失事漁船獲救的最快時間為3小時.
【解析】
作AD⊥BC于點D,在直角三角形ABD中,根據(jù)三角函數(shù)求得AD的長;再在直角三角形ACD中,根據(jù)三角函數(shù)求得AC的長;先求出BC的長,再根據(jù)搜救船行駛路程+失事船只漂移路程=AC的長列方程求解可得.
過點A作AD⊥BC于點D,
在Rt△ABD中,∵AB=52、∠B=60°,
∴AD=ABsinB=52,
在Rt△ADC中,AD=78,∠C=45°,
∴AC=AD=156,
設(shè)失事漁船獲救的最快時間為t,
根據(jù)題意,得:2t+50t=156,
∴t=3,
答:失事漁船獲救的最快時間為3小時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線,經(jīng)過點D(6,1),點C是雙曲線第三象限上的動點,過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A,B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線的頂點坐標(biāo)為 ,伴隨直線為 ,拋物線與其伴隨直線的交點坐標(biāo)為 和 ;
(2)如圖,頂點在第一象限的拋物線與其伴隨直線相交于點A,B(點A在點B的左側(cè)),與x軸交于點C,D.
①若∠CAB=90°,求m的值;
②如果點P(x,y)是直線BC上方拋物線上的一個動點,△PBC的面積記為S,當(dāng)S取得最大值時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是坐標(biāo)原點,菱形OABC的頂點A的坐標(biāo)為,頂點C在x軸的正半軸上,則的角平分線所在直線的函數(shù)關(guān)系式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交x軸于A、B兩點點A在點B的左邊,交y軸于點C,直線經(jīng)過點C與x軸交于點D,拋物線的頂點坐標(biāo)為.
請你直接寫出CD的長及拋物線的函數(shù)關(guān)系式;
求點B到直線CD的距離;
若點P是拋物線位于第一象限部分上的一個動點,則當(dāng)點P運動至何處時,恰好使?請你求出此時的P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個直角三角形的苗圃,由一個正方形花壇和兩塊直角三角形的草皮組成.如果兩個直角三角形的兩條斜邊長分別為4米和6米,則草皮的總面積為( 。┢椒矫祝
A. 3 B. 9 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,弦AB、CD相交于點E,=,點D在上,連接CO,并延長CO交線段AB于點F,連接OA、OB,且OA=,tan∠OBA=.
(1)求證:∠OBA=∠OCD;
(2)當(dāng)△AOF是直角三角形時,求EF的長;
(3)是否存在點F,使得S△CEF=4S△BOF,若存在,請求EF的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一空曠場地上設(shè)計一落地為矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內(nèi)的條件下活動,其可以活動的區(qū)域面積為S(m2).①如圖1,若BC=4m,則S= m2.②如圖2,現(xiàn)考慮在(1)中的矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其它條件不變則在BC的變化過程中,當(dāng)S取得最小值時,邊BC的長為 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩點分別在反比例函數(shù)y=(x<0)和y=(x>0)的圖象上,連接OA,OB,若OA⊥OB,OA=OB,則k的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com