【題目】如圖,在中,

(1)先作的平分線交邊于點,再以點為圓心,長為半徑作

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)請你判斷(1)中的位置關(guān)系,并證明你的結(jié)論.

(3)若,,求出(1)中的半徑.

【答案】(1)答案見解析;(2)BC與⊙P相切;(3)

【解析】試題分析:(1)根據(jù)題意畫出圖形即可;(2)與⊙相切,作,根據(jù)角平分線的性質(zhì)定理可得,即可得是⊙的半徑,所以與⊙相切;(3)中,根據(jù)勾股定理求得BC的長,

設(shè),由可得,即可求得x的值,即可得⊙的半徑.

試題解析:

)如圖所示.

與⊙相切.

證明:作

的角平分線上,

,,

,

是⊙的半徑,

與⊙相切.

)在中,由勾股定理可得:

可得,

設(shè),

則有,

解得:

即⊙的半徑為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備購買A、B兩種型號籃球,詢問了甲、乙兩間學校了解這兩款籃球的價格,下表是甲、乙兩間學校購買A、B兩種型號籃球的情況:

購買學校

購買型號及數(shù)量(個)

購買支出款項(元)

A

B

3

8

622

5

4

402

(1)求A、B兩種型號的籃球的銷售單價;

(2)若該學校準備用不多于1000元的金額購買這兩種型號的籃球共20個,求A種型號的籃球最少能采購多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)a、b在數(shù)軸上的位置如圖所示,且|a||b|,下列各式中正確的個數(shù)是( 。

a+b0;ba0; ;④3ab0;ab0

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題

(1)

(2)

3

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習絕對值后,我們知道,表示數(shù)在數(shù)軸上的對應(yīng)點與原點的距離. 如:表示5在數(shù)軸上的對應(yīng)點到原點的距離.而,即表示50在數(shù)軸上對應(yīng)的兩點之間的距離.類似的,有:表示53在數(shù)軸上對應(yīng)的兩點之間的距離;,所以表示5、在數(shù)軸上對應(yīng)的兩點之間的距離. 一般地,點A、B在數(shù)軸上分別表示有理數(shù)、,那么AB之間的距離可表示為

請根據(jù)絕對值的意義并結(jié)合數(shù)軸解答下列問題:

1)數(shù)軸上表示25的兩點之間的距離是______;數(shù)軸上表示1和-3的兩點之間的距離是 ;

2)數(shù)軸上P、Q兩點的距離為3,且點P表示的數(shù)是2,則點Q表示的數(shù)是___________.

3)點AB、C在數(shù)軸上分別表示有理數(shù)、1,那么AB的距離與AC的距離之和可表示為 ;

4)滿足的整數(shù)的值為 .

5的最小值為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,在平面直角坐標系中,直線分別交軸、軸于點、,⊙的半徑為個單位長度,點為直線上的動點,過點的切線、,切點分別為、,且

(1)判斷四邊形的形狀并說明理由.

(2)求點的坐標.

(3)若直線沿軸向左平移得到一條新的直線,此直線將的圓周分得兩段弧長之比為,請直接寫出的值.

(4)若將沿軸向右平移(圓心始終保持在軸上),試寫出當與直線有交點時圓心的橫坐標的取值范圍.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AB=2,點D為邊AB上一點,過點DDE∥AC,交BCE點;過E點作EF⊥DE,交AB的延長線于F點.設(shè)AD=x,△DEF的面積為y,則能大致反映yx函數(shù)關(guān)系的圖象是( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°AC=2AB,點DAC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC

試猜想線段BEEC的數(shù)量及位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后, 的頂點均在格點上,點的坐標為.

1向上平移5個單位后得到對應(yīng)的,畫出,并寫出的坐標;

2以原點為對稱中心,再畫出與關(guān)于原點對稱的,并寫出點的坐標.

查看答案和解析>>

同步練習冊答案