【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為,

1)在圖中畫出關(guān)于軸對(duì)稱的;

2)通過平移,使移動(dòng)到原點(diǎn)的位置,畫出平移后的

3)在中有一點(diǎn),則經(jīng)過以上兩次變換后點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為

【答案】1)圖見解析;(2)圖見解析;(3

【解析】

1)先分別找到AB、C關(guān)于x軸的對(duì)稱點(diǎn),然后連接、、即可;

2)先判斷移動(dòng)到原點(diǎn)的位置時(shí)的平移規(guī)律,然后分別將、按此規(guī)律平移,得到、,連接、即可;

3)根據(jù)關(guān)于x軸對(duì)稱的兩點(diǎn)坐標(biāo)關(guān)系:橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)即可得到,然后根據(jù)(2)中的平移規(guī)律即可得到的坐標(biāo).

解:(1)先分別找到A、B、C關(guān)于x軸的對(duì)稱點(diǎn),然后連接、、,如下圖所示:即為所求

2)∵

到點(diǎn)O0,0)的平移規(guī)律為:先向左平移4個(gè)單位,再向上平移2個(gè)單位

分別將、按此規(guī)律平移,得到、,連接、,如圖所示,即為所求;

3)由(1)可知,經(jīng)過第一次變化后為

然后根據(jù)(2)的平移規(guī)律,經(jīng)過第二次變化后為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與直線交于點(diǎn)

求拋物線的解析式.

點(diǎn)是拋物線上、之間的一個(gè)動(dòng)點(diǎn),過點(diǎn)分別作軸、軸的平行線與直線交于點(diǎn)、,以、為邊構(gòu)造矩形,設(shè)點(diǎn)的坐標(biāo)為,求,之間的關(guān)系式.

將射線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)后與拋物線交于點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當(dāng)y1﹣y2=4時(shí),求m的值;

(2)如圖,過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)Px軸上,若三角形PBD的面積是8,請(qǐng)寫出點(diǎn)P坐標(biāo)(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象如圖所示,下列說法:①;②函數(shù)不經(jīng)過第一象限;③不等式的解集是;④.其中正確的個(gè)數(shù)有( )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成正比例,且時(shí),

1)求該函數(shù)的解析式;

2)求出此函數(shù)圖象與,軸的交點(diǎn)坐標(biāo),并在本題所給的坐標(biāo)系中畫出此函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用同角的余角相等可以幫助我們得到相等的角,這個(gè)規(guī)律在全等三角形的判定中有著廣泛的運(yùn)用.

1)如圖①,,,三點(diǎn)共線,于點(diǎn),于點(diǎn),,且.若,求的長.

2)如圖②,在平面直角坐標(biāo)系中,為等腰直角三角形,直角頂點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.求直線軸的交點(diǎn)坐標(biāo).

3)如圖③,,平分,若點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為.則 .(只需寫出結(jié)果,用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(﹣12),點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,ACx軸交于點(diǎn)D,當(dāng)時(shí),則點(diǎn)C的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長是( 。

A. B. C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.

1)若△ABC內(nèi)有一點(diǎn)Pa,b)隨著△ABC平移后到了點(diǎn)P′(a+4b1),直接寫出A點(diǎn)平移后對(duì)應(yīng)點(diǎn)A′的坐標(biāo).

2)直接作出△ABC關(guān)于y軸對(duì)稱的△ABC′(其中A′、B′、C′分別是AB、C的對(duì)應(yīng)點(diǎn))

3)求四邊形ABCC的面積.

查看答案和解析>>

同步練習(xí)冊答案