如圖是一塊矩形ABCD的場地,長AB=102,寬AD=51,從A、B兩處入口的中路寬都為1,兩小路匯合處路寬為2,其余部分種植草坪,則草坪面積為( )

A.5050
B.4900
C.5000
D.4998
【答案】分析:本題主要利用矩形的性質(zhì)求出長和寬,再進(jìn)行解答.
解答:解:由圖可知:矩形ABCD中去掉小路后,草坪正好可以拼成一個(gè)新的矩形,且它的長為:102-2=100,寬為51-1=50.所以草坪的面積應(yīng)該是長×寬=100×50=5000.
故選C.
點(diǎn)評(píng):本題考查矩形的性質(zhì)及空間想象能力,有一定的思維容量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對(duì)稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請?jiān)趫D③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這精英家教網(wǎng)塊空地建一個(gè)矩形停車場DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的中點(diǎn).
(1)求另一條直角邊BC的長度;
(2)求停車場DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個(gè)半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達(dá)到最大,請你在原圖中畫出花壇的草圖,求出它的半徑(不要求說明面積最大的理由),并求此時(shí)直角三角形空地ABC的總利用率是百分之幾(精確到1%).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【閱讀理解】:若一條直線l把一個(gè)圖形分成面積相等的兩個(gè)圖形,則稱這樣的直線l叫做這個(gè)圖形的等積直線.如圖①,直線l經(jīng)過三角形ABC的頂點(diǎn)A和邊BC的中點(diǎn)N,易知直線l將△ABC分成兩個(gè)面積相等的圖形,則稱直線l為△ABC的等積直線.

根據(jù)上述內(nèi)容解決以下問題:
(1)如圖②,在矩形ABCD中,直線l經(jīng)過AD、BC邊的中點(diǎn)M、N,請你判斷直線l是否為該矩形的等積直線.
 (填“是”或“否”)并在圖②中再畫出一條該矩形的等積直線;(不必寫作法,保留作圖痕跡)
(2)如圖③,在梯形ABCD中,直線l經(jīng)過AD、BC邊的中點(diǎn)M、N,請你判斷直線l是否為該梯形的等積直線.
;(填“是”或“否”)
(3)在圖③中,過MN的中點(diǎn)O任做一條直線PQ分別交AD,BC于點(diǎn)P,Q(如圖④),猜想PQ是否為該梯形的等積直線,若“是”請證明,若“不是”請說明理由;
【探索應(yīng)用】:
李大爺家有一塊五邊形的土地如圖⑤,已知∠A、∠B、∠C都是直角,AB∥CD,BC∥AE,現(xiàn)決定畫一條線把五邊形土地分為兩
塊,其中一塊地用來改種核桃樹,要求兩塊地面積相同,請你幫李大爺畫出這條線,并判斷這樣的直線有多少條(保留作圖痕跡,不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是某居民小區(qū)的一塊直角三角形空地ABC,其斜邊AB=100米,直角邊AC=80米.
(1)求另一條直角BC的長度;
(2)現(xiàn)要利用這塊空地建一個(gè)矩形停車場DCFE,使得D在BC邊上,E、F分別是AB、AC邊的中點(diǎn).求矩形DCFE的面積;
(3)現(xiàn)要利用這塊空地建一個(gè)正方形停車場DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的點(diǎn).求正方形DCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(39):3.5 直線和圓的位置關(guān)系(解析版) 題型:解答題

如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這塊空地建一個(gè)矩形停車場DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的中點(diǎn).
(1)求另一條直角邊BC的長度;
(2)求停車場DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個(gè)半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達(dá)到最大,請你在原圖中畫出花壇的草圖,求出它的半徑(不要求說明面積最大的理由),并求此時(shí)直角三角形空地ABC的總利用率是百分之幾(精確到1%).

查看答案和解析>>

同步練習(xí)冊答案