如圖,已知:⊙O的直徑AB與弦AC的夾角∠A=30°,過點C作⊙O的切線交AB的延長線于點P.
(1)求證:AC=CP;
(2)若PC=6,求圖中陰影部分的面積(結(jié)果精確到0.1).
(參考數(shù)據(jù):
3
=1.73
,π=3.14)
(1)證明:連接OC.
∵AB是⊙O的直徑,
∴AO=OC,
∴∠ACO=∠A=30°.
∴∠COP=2∠ACO=60°.
∵PC切⊙O于點C,
∴OC⊥PC.
∴∠P=30°.
∴∠A=∠P.
∴AC=PC.

(2)在Rt△OCP中,tan∠P=
OC
CP
,∴OC=2
3

∵S△OCP=
1
2
CP•OC=
1
2
×6×2
3
=6
3
且S扇形COB=2π,
∴S陰影=S△OCP-S扇形COB=6
3
-2π≈4.1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△OAB中,OA=OB=2,∠OAE=30°,⊙O切AB于E,且分別交OA、OB于C、D,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知扇形OAB的圓心角為直角,OA=4cm,以AB為直徑作半圓,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=4,BC=2,分別以AC、BC為直徑畫半圓,則圖中陰影部分的面積為多少?(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,∠C=90°,∠A=30°,點O在斜邊AB上,半徑為2的⊙O過點B,切AC邊于點D,交BC邊于點E.則由線段CD、CE及DE圍成的陰影部分的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD內(nèi)接于⊙O,⊙O的半徑為2,以圓心O為頂點作∠MON,使∠MON=90°,OM、ON分別與⊙O交于點E、F,與正方形ABCD的邊交于點G、H,則由OE、OF、
EF
及正方形ABCD的邊圍成的圖形(陰影部分)的面積S=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是半⊙O的直徑,點C是半⊙O的三等分點,設(shè)扇形AOC、△COB、弓形BPC的面積分別為S1、S2、S3,則它們的大小關(guān)系為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把⊙O1向右平移8個單位長度得⊙O2,兩圓相交于A、B,且O1A⊥O2A,則圖中陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(原創(chuàng)題)如圖所示,扇形OAB從圖①無滑動旋轉(zhuǎn)到圖②,再由圖②到圖③,∠O=60°,OA=1.
(1)求O點所運動的路徑長;
(2)O點走過路徑與直線L圍成的面積.

查看答案和解析>>

同步練習(xí)冊答案