(1)已知正方形ABCD ,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,若EG⊥FH,求證EG = FH”(如圖1);
(2)如果把條件中的“正方形”改為“長(zhǎng)方形”,并設(shè)AB =2,BC =3(如圖2),試探究EG、FH之間有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如果把條件中的“EG⊥FH”改為“EG與FH的夾角為45°”,并假設(shè)正方形ABCD的邊長(zhǎng)為1,FH的長(zhǎng)為(如圖3),試求EG的長(zhǎng)度。
解析試題分析:因?yàn)锳BCD是正方形,
在(2)的條件下,此時(shí)仍然滿足EG = FH”
過A作AM//EG,作AN//FH,連接MN,延長(zhǎng)CB至P,使PB=DM,連接AP,過A作MN的垂線交MN于Q。
顯然三角形ABP與ADM全等,AP=AM,角DAM=角BAP
可知角PAN=45°,三角形ANP與ANM全等,MN=NP=BN+DM
設(shè)DM=x
則:MC=1-x
AN=FH=
BN=1/2
MN=NP=BN+DM=1/2+x
NC=1-1/2=1/2
在直角三角形CMN中,
EG=AM=
考點(diǎn):相似三角形的判定
點(diǎn)評(píng):解答本題的的關(guān)鍵是熟練掌握有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似;兩組邊對(duì)應(yīng)成比例且夾角相等的三角形相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
|
|
|
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com