【題目】(2016·無錫中考)如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長度是(  )

A. B. 2 C. 3 D. 2

【答案】A

【解析】∵∠C=90°,ABC=30°,AC=2,

AB=4,A=60°,

由勾股定理得,BC==,

由旋轉(zhuǎn)的性質(zhì)可知,CA=CA′,由∠A=60°

ACA′是等邊三角形,

AA′=2,

A′B=2,

由旋轉(zhuǎn)的性質(zhì)可知,B BC是等邊三角形,

BB =,

BD=

由勾股定理得,AD=.

故選:A.

點(diǎn)睛: 本題考查旋轉(zhuǎn)的性質(zhì)、30度角的直角三角形性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是證明ACA1,BCB1是等邊三角形,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD交于點(diǎn)OCE平分∠BCDAB于點(diǎn)E,交BD于點(diǎn)F,且∠ABC60°AB2BC,連接OE.下列結(jié)論:①∠ACD30°;SABCDAC·BC;OEAC6;SOCF2SOEF.成立的個(gè)數(shù)有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,ADBC,∠ABC=,AB=8,AD=3,BC=4,點(diǎn)PAB邊上一動點(diǎn),若△PAD與△PBC是相似三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)是(  )

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個(gè)端點(diǎn)A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點(diǎn)C為線段AB的中點(diǎn).現(xiàn)將線段BA繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)D.如圖,若該拋物線經(jīng)過原點(diǎn)O,且a=-.

(1)求點(diǎn)D的坐標(biāo)及該拋物線的解析式;

(2)連結(jié)CD.問:在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】13×13的網(wǎng)格圖中,已知ABC和點(diǎn)M(1,2).

(1)以點(diǎn)M為位似中心,畫出ABC的位似圖形A′B′C′,其中A′B′C′ABC的位似比為2;

(2)寫出A′B′C′的各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(﹣1)2017的結(jié)果是(
A.﹣1
B.1
C.﹣2017
D.2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點(diǎn),直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)P是直線l上的一個(gè)動點(diǎn),當(dāng)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和最短時(shí),求點(diǎn)P的坐標(biāo);

(3)點(diǎn)M也是直線l上的動點(diǎn),且△MAC為等腰三角形,請直接寫出所有符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖形:(1)線段;(2)圓;(3)等腰三角形,(4)平行四邊形、(5)角、(6)正方形在這6種圖形中一定是軸對稱圖形的有( )

A. 6個(gè)B. 5個(gè)C. 4個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016·濱州中考)如圖,AB是⊙O的直徑,CD是⊙O上的點(diǎn),且OCBD,AD分別與BCOC相交于點(diǎn)E,F,則下列結(jié)論:①ADBD;②∠AOC=∠AEC;③CB平分∠ABD;④AFDF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是(  )

A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤

查看答案和解析>>

同步練習(xí)冊答案