精英家教網(wǎng)如圖,四邊形ABCD是邊長為a的正方形,點G,E分別是邊AB,BC的中點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)證明:∠BAE=∠FEC;
(2)證明:△AGE≌△ECF;
(3)求△AEF的面積.
分析:(1)由于∠AEF是直角,則∠BAE和∠FEC同為∠AEB的余角,由此得證;
(2)根據(jù)正方形的性質,易證得AG=EC,∠AGE=∠ECF=135°;再加上(1)得出的相等角,可由ASA判定兩個三角形全等;
(3)在Rt△ABE中,根據(jù)勾股定理易求得AE2;由(2)的全等三角形知:AE=EF,即△AEF是等腰Rt△,因此其面積為AE2的一半,由此得解.
解答:(1)證明:∵∠AEF=90°,
∴∠FEC+∠AEB=90°;(1分)
在Rt△ABE中,∠AEB+∠BAE=90°,
∴∠BAE=∠FEC;(3分)

(2)證明:∵G,E分別是正方形ABCD的邊AB,BC的中點,
∴AG=GB=BE=EC,且∠AGE=180°-45°=135°;
又∵CF是∠DCH的平分線,
∠ECF=90°+45°=135°;(4分)
在△AGE和△ECF中,
AG=EC
∠AGE=∠ECF=135o
∠GAE=∠FEC
;
∴△AGE≌△ECF;(6分)

(3)解:由△AGE≌△ECF,得AE=EF;
又∵∠AEF=90°,
∴△AEF是等腰直角三角形;(7分)
∵AB=a,E為BC中點,
∴BE=
1
2
BC=
1
2
AB=
1
2
a,
根據(jù)勾股定理得:AE=
a2+(
1
2
a)
2
=
5
2
a,
∴S△AEF=
5
8
a2.(9分)
點評:此題主要考查了正方形的性質、全等三角形的判定和性質、等腰直角三角形的判定和性質等;綜合性較強,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案