在□ABCD中,點E、F分別在AB、CD上,F(xiàn)C=AE.四邊形DEBF是平行四邊形嗎?說明理由.

 

【答案】

見解析

【解析】本題主要考查平行四邊形的性質(zhì)及判定

由平行四邊形的性質(zhì)可得AB∥CD,且AB=CD,又由題中條件,則不難得出其為平行四邊形.

四邊形DEBF是平行四邊形。    

∵□ABCD

∴DC∥AB  DC=AB                   

∴DF∥EF                           

又∵FC=AE                             

∴DC – FC = AB – AE         

即  DF=EC                     

∴四邊形DEBF是平行四邊形

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沙河口區(qū)一模)如圖,在?ABCD中,點E、F在對角線BD上,且BE=DF,連接AE、CF.
求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湖州)已知:如圖,在?ABCD中,點F在AB的延長線上,且BF=AB,連接FD,交BC于點E.
(1)說明△DCE≌△FBE的理由;
(2)若EC=3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•濟南)(1)如圖1,在?ABCD中,點E,F(xiàn)分別在AB,CD上,AE=CF.求證:DE=BF.
(2)如圖2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分線,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安慶一模)如圖,在?ABCD中,點E是邊AB的中點,連接DE交對角線AC于點O,則△AOE與△COD的面積比為
1:4
1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,點M為CD的中點,AM與BD相交于點N,那么△DMN與四邊形BCMN的面積的比為:
1
5
1
5

查看答案和解析>>

同步練習(xí)冊答案