【題目】如圖1,以△ABC的邊AB為直徑作⊙O,交AC邊于點(diǎn)E,BD平分∠ABE交AC于F,交⊙O于點(diǎn)D,且∠BDE=∠CBE.
(1)求證:BC是⊙O的切線;
(2)延長ED交直線AB于點(diǎn)P,如圖2,若PA=AO,DE=3,DF=2,求的值及AO的長.
【答案】(1)答案見解析;(2),AO=.
【解析】試題分析:(1)根據(jù)圓周角定理可知∠BAE+∠EBA=90°,由∠BAE=∠BDE,∠BDE=∠CBE,所以∠EBA+∠EBC=90°.
(2)易證OD∥DE,從而可知,易證△EDF∽△BDE,DE2=DFDB,從而可求出DB的長度,由勾股定理可知AB的長度.
試題解析:解:(1)∵AB是直徑,∴∠BAE+∠EBA=90°.∵∠BAE=∠BDE,∠BDE=∠CBE,∴∠EBA+∠EBC=90°,∴BC是⊙O的切線;
(2)連接OD.∵BD平分∠ABE,∴∠OBD=∠EBD.∵∠ODB=∠OBD,∴∠ODB=∠DBE,∴OD∥BE.∵PA=AO,∴.∵∠DEF=∠DBA,∴∠DEF=∠EBD.∵∠EDF=∠EDB,∴△EDF∽△BDE,∴,∴DE2=DFDB,∴DB=,∴由勾股定理可知:AB2=AD2+BD2,∴AB=,∴AO=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x﹣1的圖象經(jīng)過A(0,﹣1)、B(1,0)兩點(diǎn),與反比例函數(shù)y=的圖象在第一象限內(nèi)的交點(diǎn)為M,若△OBM的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P,使AM⊥PM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)x軸上是否存在點(diǎn)Q,使△QBM∽△OAM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展“陽光體育”活動,決定開設(shè)乒乓球、籃球、跑步、跳繩這四種運(yùn)動項(xiàng)目,學(xué)生只能選擇其中一種,為了解學(xué)生喜歡哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成兩張不完整的統(tǒng)計(jì)圖,請你結(jié)合圖中的信息解答下列問題:
(1)樣本中喜歡籃球項(xiàng)目的人數(shù)百分比是 ;其所在扇形統(tǒng)計(jì)圖中的圓心角的度數(shù)是 ;
(2)把條形統(tǒng)計(jì)圖補(bǔ)畫完整并注明人數(shù);
(3)已知該校有1000名學(xué)生,根據(jù)樣本估計(jì)全校喜歡乒乓球的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在邊AB、BC上,且AE=AB=2,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,下列結(jié)論:①EF=2BE;②△APE≌△QEB;③FQ=3EQ;④SBFPE=8,其中正確的結(jié)論是______(只填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k+3)x+k2+2k=0,有兩個不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若方程的兩實(shí)數(shù)根x1,x2滿足x1x2﹣x12﹣x22=﹣16,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB=CD,BC=10,對角線AC、BD相交于點(diǎn)O,且AC⊥BD,設(shè)AD=x,△AOB的面積為y.
(1)求∠DBC的度數(shù);
(2)求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)如圖1,設(shè)點(diǎn)P、Q分別是邊BC、AB的中點(diǎn),分別聯(lián)結(jié)OP,OQ,PQ.如果△OPQ是等腰三角形,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的三個方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一個方程有實(shí)根,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,點(diǎn)E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn),順次連接E、F、G、H,得到的四邊形EFGH叫中點(diǎn)四邊形.
(1)求證:四邊形EFGH是平行四邊形;
(2)如圖,當(dāng)四邊形ABCD變成等腰梯形時(shí),它的中點(diǎn)四邊形是菱形,請你探究并填空:
當(dāng)四邊形ABCD變成平行四邊形時(shí),它的中點(diǎn)四邊形是 ;
當(dāng)四邊形ABCD變成矩形時(shí),它的中點(diǎn)四邊形是 ;
當(dāng)四邊形ABCD變成菱形時(shí),它的中點(diǎn)四邊形是 ;
當(dāng)四邊形ABCD變成正方形時(shí),它的中點(diǎn)四邊形是 ;
(3)根據(jù)以上觀察探究,請你總結(jié)中點(diǎn)四邊形的形狀由原四邊形的什么決定的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABO中,OA=OB,C是邊AB的中點(diǎn),以O為圓心的圓過點(diǎn)C,連接OC,AO延長線交⊙O于點(diǎn)D,OF是∠DOB的平分線,E為OF上一點(diǎn),連接BE.
(1)求證:AB與⊙O相切;
(2)①當(dāng)∠OEB=_____時(shí),四邊形OCBE為矩形;
②在①的條件下,若AB=4,則OA=_____時(shí),四邊形OCBE為正方形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com