【題目】如圖,拋物線經(jīng)過三點(diǎn).點(diǎn)是拋物線段上一動(dòng)點(diǎn)(不含端點(diǎn),的延長線交于點(diǎn)

1)求拋物線的解析式.

2)當(dāng)時(shí),求點(diǎn)的坐標(biāo)。

3)在(2)的條件下,求的面積.

【答案】(1)拋物線解析式為;(2)點(diǎn)的坐標(biāo)是;(3).

【解析】

1)利用待定系數(shù)法求出解析式即可.

2)連接,根據(jù)直角三角形斜邊的中線等于斜邊的一半,可得,根據(jù)可證,可得,即得點(diǎn)在第四象限角平分線上,可設(shè)點(diǎn)的坐標(biāo)為(),將點(diǎn)代入拋物線解析式中,可得 ,求出即可.

3)由于,可得,由,根據(jù)三角形的面積公式代入計(jì)算即可.

1)解:∵拋物線經(jīng)過軸上的點(diǎn),.解析式為

代入,得

,解得,

∴拋物線解析式為

2)解:連接

,,

,,

()

∴點(diǎn)在第四象限角平分線上.

∴可設(shè)點(diǎn)的坐標(biāo)為()

∴點(diǎn)的坐標(biāo)是

3)解:∵,

,

.

故答案為:(1)拋物線解析式為;(2)點(diǎn)的坐標(biāo)是;(3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在反比例函數(shù)y(x0)的圖象上,點(diǎn)B在反比例函數(shù)y(x0)的圖象上,ABx軸,BCx軸,垂足為C,連接AC,若△ABC的面積為2,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一帶一路倡議提出五年多來,交通、通信、能源等各項(xiàng)相關(guān)建設(shè)取得積極進(jìn)展,也為增進(jìn)各國民眾福祉提供了新的發(fā)展機(jī)遇.下圖是2017一年一路沿線部分國家的通信設(shè)施現(xiàn)狀統(tǒng)計(jì)圖.

根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷合理的是( ).

A.互聯(lián)網(wǎng)服務(wù)器擁有個(gè)數(shù)最多的國家是阿聯(lián)酋

B.寬帶用戶普及率的中位數(shù)是11.05%

C.8個(gè)國家的電話普及率能夠達(dá)到平均每人1

D.只有俄羅斯的三項(xiàng)指標(biāo)均超過了相應(yīng)的中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB的直徑,點(diǎn)PBA的延長線上,PD于點(diǎn)D,過點(diǎn)B,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E

(Ⅰ)求證:AB=BE

(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年南充市有縣區(qū)申報(bào)了長壽之鄉(xiāng),并獲認(rèn)定.上月某中學(xué)九(1)班學(xué)生社會(huì)實(shí)踐前往該區(qū)一鄉(xiāng)鎮(zhèn)調(diào)研進(jìn)入老齡化社會(huì)的數(shù)據(jù).按國際通行標(biāo)準(zhǔn),當(dāng)一個(gè)國家或地區(qū)6060歲以上人口達(dá)到人口總數(shù)的10%,或6565歲以上人口達(dá)到人口總數(shù)的7%,這個(gè)區(qū)域進(jìn)入老齡化社會(huì).被調(diào)查的800人年齡情況統(tǒng)計(jì)圖如下:

1)該鄉(xiāng)鎮(zhèn)是否進(jìn)入老齡化社會(huì)?并說明理由.

2)請(qǐng)你為該鄉(xiāng)鎮(zhèn)提一條合理化建議.

3)在該鄉(xiāng)鎮(zhèn)60歲及以上人群中隨機(jī)抽取1人,求年齡不低于70歲的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在線段BC上任取一點(diǎn)P,連接DP,作射線PE⊥DP,PE與直線AB交于點(diǎn)E.

(1)試確定當(dāng)CP=3時(shí),點(diǎn)E的位置;

(2)若設(shè)CP=x,BE=y,試寫出y關(guān)于自變量x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】傳統(tǒng)的端午節(jié)即將來臨,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠價(jià)為每只4元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,yx滿足如下關(guān)系:

y=

(1)李明第幾天生產(chǎn)的粽子數(shù)量為280只?

(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,px之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求wx之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°DBC的中點(diǎn),EAD的中點(diǎn),過點(diǎn)AAFBCBE的延長線于點(diǎn)F

1)求證:四邊形ADCF是菱形;

3)若AC6,AB8,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:三角形的一條中位線與第三邊上的中線互相平分.

要求:(1)根據(jù)給出的和它的一條中位線,在給出的圖形上,請(qǐng)用尺規(guī)作出邊上的中線,于點(diǎn).不寫作法,保留痕跡;

(2)據(jù)此寫出已知,求證和證明過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案