【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例.
原題:如圖①,點(diǎn) 分別在正方形 的邊 上, ,連接 ,則 ,試說明理由.
(1)思路梳理
因?yàn)? ,所以把 繞點(diǎn) 逆時(shí)針旋轉(zhuǎn)90°至 ,可使 與 重合.因?yàn)? ,所以 ,點(diǎn) 共線.
根據(jù) , 易證 , 得 .請證明.
(2)類比引申
如圖②,四邊形 中, , ,點(diǎn) 分別在邊 上, .若 都不是直角,則當(dāng) 與 滿足等量關(guān)系時(shí), 仍然成立,請證明.
(3)聯(lián)想拓展
如圖③,在 中, ,點(diǎn) 均在邊 上,且 .猜想 應(yīng)滿足的等量關(guān)系,并寫出證明過程.
【答案】
(1)SAS;△AFE
(2)解:∠B+∠D=180°時(shí),EF=BE+DF;
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,∵∠ADC+∠B=180°,
∴∠FDG=180°,點(diǎn)F、D、G共線,在△AFE和△AFG中,
∵AE=AG,∠FAE=∠FAG,AF=AF,
∴△AFE≌△AFG(SAS),
∴EF=FG,即:EF=BE+DF.
(3)解:猜想:DE2=BD2+EC2 , 理由如下:
根據(jù)ΔABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到ΔACD′,如圖,連接ED′.
∴ΔABDΔACD′.
∴CD′=BD,AD′=AD,∠B=∠ACD′,∠BAD=∠D′ AC.
在RtΔABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°.
∴∠ACB+∠ACD′=90°,即∠D′ CE=90°,
∴D’C2+CE2=D′E2 .
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°.
∴∠D′AC+∠EAC=45°,即∠D′ AE=45°.∴ΔAD′ EΔADE,∴ED=ED′,
∴DE2=BD2+EC2 .
【解析】(1)解:∵AB=AD,∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,點(diǎn)F、D、G共線,在△AFE和△AFG中,∵AE=AG,∠EAF=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF
(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,再證明△AFG≌△AFE進(jìn)而得到EF=FG,即可得EF=BE+DF。
(2)∠B+∠D=180°時(shí),EF=BE+DF,與(1)的證法類同。
(3)根據(jù)△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE′,根據(jù)旋轉(zhuǎn)的性質(zhì),可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根據(jù)Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2 , 證△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ,已知 中, , 的頂點(diǎn)A,B分別在邊OM,ON上,當(dāng)點(diǎn)B在邊ON上運(yùn)動時(shí),點(diǎn)A隨之在邊OM上運(yùn)動, 的形狀保持不變,在運(yùn)動過程中,點(diǎn)C到點(diǎn)O的最大距離為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2﹣8x﹣1=0配方后可變形為( )
A.(x+4)2=17
B.(x+4)2=15
C.(x﹣4)2=17
D.(x﹣4)2=15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( 。
A.因?yàn)橄喾磾?shù)是成對出現(xiàn)的,所以0沒有相反數(shù)B.數(shù)軸上原點(diǎn)兩旁的兩點(diǎn)表示的數(shù)是互為相反數(shù)
C.符號不同的兩個(gè)數(shù)是互為相反數(shù)D.正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一樓房AB后有一假山,其坡度為i=1: ,山坡坡面上E點(diǎn)處有一休息亭,測得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測得E點(diǎn)的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( 。
A. 數(shù)據(jù)3、5、4、1、﹣2的中位數(shù)是3
B. 數(shù)據(jù)1、1、0、2、4的平均數(shù)是2
C. 在選舉中,人們通常最關(guān)心是數(shù)據(jù)的眾數(shù)
D. 甲乙兩人近5次數(shù)學(xué)考試平均分都是95分,方差分別是2.5和8.5,要選一人參加數(shù)學(xué)競賽,選甲比較合適
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com