【題目】在四邊形ABCD中,如果∠B+∠C=180°,那么 ( )
A. AB∥CD B. AD∥BC C. AB與CD相交 D. AB與DC垂直
科目:初中數學 來源: 題型:
【題目】如圖,在三角形ABC中,底邊BC=8 cm,高AD=6 cm,點E為AD上一動點,當點E從點D附近向點A運動時,三角形BEC的面積發(fā)生了變化.
(1)在這個變化過程中,哪些量是變量?哪些量是常量?
(2)如果設DE的長為x cm,三角形BEC的面積為y cm2,那么怎樣用含x的式子表示y?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,正方形ABCD的對角線AC,BD相交于點O,正方形A′B′C′D′的頂點A′與點O重合,A′B′交BC于點E,A′D′交CD于點F.
(1)求證:OE=OF;
(2)若正方形ABCD的對角線長為4,求兩個正方形重疊部分的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環(huán)數均為8.7環(huán),方差分別為S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,則四人中成績最穩(wěn)定的是( )
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按要求作圖
(1)已知△ABC中,∠A=90°,∠B=67.5°,請畫一條直線,把這個三角形分割成兩個等腰三角形.(請你選用下面給出的備用圖,把所有不同的分割方法都畫出來.只需畫圖,不必說明理由,但要在圖中標出相等兩角的度數)
(2)已知△ABC中,∠C是其最小的內角,過頂點B的一條直線把這個三角形分割成了兩個等腰三角形,請?zhí)角蟆螦BC與∠C之間的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關系,并證明你的結論.
解:∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補角定義)
∴∠2=________.(________.),
∴AB∥EF(________.)
∴∠3=________.(________.)
又∠B=∠3(已知)
∴∠B=________.(等量代換)
∴DE∥BC(________.)
∴∠C=∠AED(________.).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com