如圖,桌面內(nèi),直線l上擺放著兩塊大小相同的直角三角板,它們中較大銳角的度數(shù)為60°.將△ECD沿直線l向左平移到圖的位置,使E點落在AB上,即點E′,點P為AC與E′D′的交點.
(1)求∠CPD′的度數(shù);
(2)求證:AB⊥E′D′.
分析:(1)由平移的性質(zhì)知,DE∥D′E′,利用兩直線平行,同位角相等得∠CPD′=∠CED,故可求出∠CPD',
(2)由平移的性質(zhì)知,CE∥C′E′,∠CED=∠C′E′D′,利用兩直線平行,同位角相等得∠BE′C′=∠BAC,故可求出∠BE′D'=90°,故結(jié)論可證.
解答:解:(1)由平移的性質(zhì)知,DE∥D′E′,
∴∠CPD′=∠CED=60°;
(2)由平移的性質(zhì)知,CE∥C′E′,∠CED=∠C′E′D′=60°,
∴∠BE′C′=∠BAC=30°,
∴∠BE′D′=90°
∴AB⊥E′D′.
點評:主要考查了平移的性質(zhì)和平行線的性質(zhì).需要注意的是:平移前后圖形的大小、形狀都不改變.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,桌面內(nèi),直線l上擺放著兩塊大小相同的直角三角板,它們中較小直角邊的長為6cm,較小銳角的度數(shù)為30°.
(1)將△ECD沿直線AC翻折到如圖(a)的位置,ED′與AB相交于點F,請證明:AF=FD′;
(2)將△ECD沿直線l向左平移到(b)的位置,使E點落在AB上,你可以求出平移的距離,試試看;
(3)將△ECD繞點C逆時針方向旋轉(zhuǎn)到圖(c)的位置,使E點落在AB上,請求出旋轉(zhuǎn)角的度數(shù).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,桌面內(nèi),直線上擺放著兩塊大小相同的直角三角板,它們中較大銳角的度數(shù)為.將沿直線向左平移到圖的位置,使E點落在AB上,即點,點P為AC的交點.

(1)求∠CPD'的度數(shù);

(2)求證:AB.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,桌面內(nèi),直線上擺放著兩塊大小相同的直角三角板,它們中較大銳角的度數(shù)為.將沿直線向左平移到圖的位置,使E點落在AB上,即點,點P為AC的交點.

(1)求∠CPD'的度數(shù);
(2)求證:AB.

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆陜西省渭南市七年級下學期期中考試數(shù)學卷(解析版) 題型:解答題

如圖,桌面內(nèi),直線上擺放著兩塊大小相同的直角三角板,它們中較大銳角的度數(shù)為.將沿直線向左平移到圖的位置,使E點落在AB上,即點,點P為AC的交點.

(1)求∠CPD'的度數(shù);

(2)求證:AB.

 

查看答案和解析>>

同步練習冊答案