【題目】(1)已知:如圖1,ABC是O的內(nèi)接正三角形,點P為弧BC上一動點,求證:PA=PB+PC.

下面給出一種證明方法,你可以按這一方法補全證明過程,也可以選擇另外的證明方法.

證明:在AP上截取AE=CP,連接BE

∵△ABC是正三角形

∴AB=CB

∵∠1和2的同弧圓周角

∴∠1=∠2

∴△ABE≌△CBP

(2)如圖2,四邊形ABCD是O的內(nèi)接正方形,點P為弧BC上一動點,求證:PA=PC+ PB.

(3)如圖3,六邊形ABCDEF是O的內(nèi)接正六邊形,點P為弧BC上一動點,請?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論.

【答案】(1)見解析;(2)見解析;(3)PA=PC+PB

【解析】

(1)延長BPE,使PEPC,連接CE,證明PCE是等邊三角形.利用CEPCE3=60°,EBCPAC,得到BEC≌△APC,所以PABEPBPC;

(2)過點BBEPBPAE,證明ABE≌△CBP,所以PCAE,可得PAPCPB;(3)在AP上截取AQPC,連接BQ可證ABQ≌△CBP,所以BQBP.又因為∠APB=30°.所以PQPBPAPQAQPBPC.

證明:(1)延長BPE,使PEPC,

連接CE∵∠1=2=60°,3=4=60°,

∴∠CPE=60°,

∴△PCE是等邊三角形,

CEPC,E3=60°;

又∵∠EBCPAC

∴△BEC≌△APC,

PABEPBPC.

(2)過點BBEPBPAE

∵∠1+2=2+3=90°

∴∠1=3,

又∵∠APB=45°,

BPBE,

又∵ABBC,

∴△ABE≌△CBP,

PCAE

(3)答:

證明:在AP上截取AQPC,

連接BQ∵∠BAPBCP,ABBC,

∴△ABQ≌△CBP,

BQBP

又∵∠APB=30°,

PB

PB+PC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列是中心對稱圖形但不是軸對稱圖形的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)與反比例函數(shù)交于點,

(1)分別求出反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個老年活動中心,這樣必須把1200立方米的生活垃圾運走

(1)假如每天能運x立方米,所需時間為y,寫出yx之間的函數(shù)解析式(不要求寫出自變量的取值范圍);

(2)若每輛拖拉機一天能運12立方米,5輛這樣的拖拉機要用多少天才能運完?

(3)在(2)的條件下運了8天后,剩下的任務(wù)要在不超過6天的時間內(nèi)完成,那么至少需要增加多少輛這樣的拖拉機才能按時完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,3)、B(3,0),以點B為圓心、2為半徑的⊙B上有一動點P.連接AP,若點CAP的中點,連接OC,則OC的最小值為( 。

A. 1 B. 2﹣1 C. D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點在邊上,,

試說明相似.

,,,請你求出之間的函數(shù)關(guān)系式.

小明猜想:若,,,只要之間滿足某種關(guān)系式,問題中的函數(shù)關(guān)系式仍然成立.你同意小明的觀點嗎?如果你同意,請求出所滿足的關(guān)系式;若不同意,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點FFG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②SFAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC,其中正確的結(jié)論的個數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論有(  。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-x+b與雙曲線y=(x>0)交于A、B兩點,與x軸、y軸分別交干E、F兩點,AC⊥x軸于點C,BD⊥y軸于點D,當(dāng)b= _____時,ACE、BDFABO面積的和等于EFO面積的.

查看答案和解析>>

同步練習(xí)冊答案