【題目】如圖,已知AB∥HD,EG平分∠AEC,EG∥AB,AF平分∠BAE,CE的延長線交AF于點F,若∠HCE=°,∠F=°,用含的代數(shù)式表示,則=_______
【答案】270-x
【解析】
由角平分線定義可得∠AEC=2∠1,∠1=∠3,∠2=∠EAB,由AB∥HD, EG∥AB,可得∠BAE=∠3,EG//HD,繼而可得∠1、∠AEC、∠2,再由三角形外角的性質可知∠2+∠F=∠AEC,代入相關式子即可求得答案.
∵EG平分∠AEC, AF平分∠BAE,
∴∠AEC=2∠1,∠1=∠3,∠2=∠EAB,
∵AB∥HD, EG∥AB,
∴∠BAE=∠3,EG//HD,
∴∠1=180°-∠HCE=180°-x°,
∴∠AEC=2(180°-x°),∠2=(180°-x°),
∵∠2+∠F=∠AEC,
∴(180°-x°)+y°=2(180°-x°),
∴y=270-x,
故答案為:270-x.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.
其中正確的結論有( )
A. 5個 B. 4個
C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G.則下列結論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅家有一塊L形的菜地,要把L形的菜地按如圖所示分成兩塊面積相等的梯形,種上不同的蔬菜.這兩個梯形的上底都是a m,下底都是b m,高都是(b-a) m.
(1)求小紅家這塊L形菜地的面積.(用含a、b的代數(shù)式表示)
(2)若a2+b2=15,ab=5,求小紅家這塊L形菜地的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題:對于形如這樣的二次三項式,可以用公式法將它分解成的形式.但對于二次三項式,就不能直接運用公式了.此時,我們可以在二次三項式中先加上一項,使它與的和成為一個完全平方式,再減去,整個式子的值不變,于是有:
像這樣,先添一適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”,利用“配方法",解決下列問題:
(1)分解因式:.
(2)比較代數(shù)式與的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中, A、B兩點分別在x軸、y軸的正半軸上,且OB = OA=3.(1)、求點A、B的坐標;(2)、已知點C(-2,2),求△BOC的面積;(3)、點P是第一象限角平分線上一點,若,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A,B兩點分別在x軸和y軸上,OA=1,OB= ,連接AB,過AB中點C1分別作x軸和y軸的垂線,垂足分別是點A1、B1 , 連接A1B1 , 再過A1B1中點C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點Cn的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)與放水時間t(分)有如下關系:
放水時間(分) | 1 | 2 | 3 | 4 | ... |
水池中水量(m) | 38 | 36 | 34 | 32 | ... |
下列結論中正確的是
A. y隨t的增加而增大B. 放水時間為15分鐘時,水池中水量為8m3
C. 每分鐘的放水量是2m3D. y與t之間的關系式為y=38-2t
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com