(本題滿分12分)在四邊形ABCD中,AD=a,CD=b,點(diǎn)E在射線BA上,點(diǎn)F在射線BC上.

觀察計(jì)算:
(1)如圖①,若四邊形ABCD是矩形,E是AB的中點(diǎn).F是BC的中點(diǎn),則四邊形DEBF   的面積S四邊形DEBF=_______.
(2)若四邊形ABCD是平行四邊形,E是AB的中點(diǎn),F(xiàn)是BC的中點(diǎn),則S四邊形DEBF:S四邊形ABCD=_______.
(3)如圖②,若四邊形ABCD是平行四邊形,且BE:AB=2:3,BF:BC=2:3,則S四邊形DEBF:S四邊形ABCD=_______.
探索規(guī)律:
如圖③,在四邊形ABCD中,若BE:AB=n:m,BF:BC=n:m,試猜想S四邊形DEBF:S四邊形ABCD=_______,請(qǐng)說(shuō)明理由.
 解決問(wèn)題:
 如圖④,某小區(qū)角落有一四邊形空地,為了充分利用空間,美化環(huán)境,想把它沿兩側(cè)墻壁改造為一塊綠地,使綠地面積是原空地面積的3倍.請(qǐng)分別在兩側(cè)墻壁上確定點(diǎn)E、F,畫出改造線DE、DF,并寫出作法.
觀察計(jì)算:(1) ab  (2) 1:2  (3)2:3 探索規(guī)律:n:m
解決問(wèn)題:在BA的延長(zhǎng)線上取一點(diǎn)E,使EA=2AB,在BC的延長(zhǎng)線上取一點(diǎn)F,使FC=2BC,連接DE、DF,則DE和DF即為所求 圖略
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,□ABCD中,點(diǎn)EAB邊上,將△EBC沿CE所在直線折疊,使點(diǎn)B落在AD邊上的點(diǎn)B′處,再將折疊后的圖形打開(kāi),若△AB′E的周長(zhǎng)為4cm,△B′DC的周長(zhǎng)為11cm,則B′D的長(zhǎng)為_(kāi)________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,菱形在平面直角坐標(biāo)系中的位置如圖所示,( ),則點(diǎn)的坐標(biāo)為
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四邊形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分線相交于點(diǎn)O,則∠COD的度數(shù)是(    )

A.80°             B.90°             C.100°            D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖1,小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形,正方形的面積為           ;再把正方形的各邊延長(zhǎng)一倍得到正方形(如圖2),如此進(jìn)行下去,正方形的面積為            .(用含有n的式子表示,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線上有三個(gè)正方形,若的面積分別為6和12,則的面積為_(kāi)________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,□ABCD的周長(zhǎng)是16,則AB+AD=        .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線l是四邊形ABCD的對(duì)稱軸,請(qǐng)?jiān)偬砑右粋(gè)條件:______,使四邊形ABCD成為菱形(不再標(biāo)注其它字母)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將兩個(gè)完全相同的長(zhǎng)方形拼成如圖所示的“L”形圖案,判斷△ACF是什么三角形?說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案