【題目】如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數y= 在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于( )
A.60
B.80
C.30
D.40
【答案】D
【解析】解:過點A作AM⊥x軸于點M,如圖所示.
設OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB= ,
∴AM=OAsin∠AOB= a,OM= = a,
∴點A的坐標為( a, a).
∵點A在反比例函數y= 的圖象上,
∴ a× a= =48,
解得:a=10,或a=﹣10(舍去).
∴AM=8,OM=6,OB=OA=10.
∵四邊形OACB是菱形,點F在邊BC上,
∴S△AOF= S菱形OBCA= OBAM=40.
故選D.
過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,結合反比例函數圖象上點的坐標特征即可求出a的值,再根據四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF= S菱形OBCA , 結合菱形的面積公式即可得出結論.
科目:初中數學 來源: 題型:
【題目】如圖,點B、E分別在直線AC和DF上,若∠AGB=∠EHF,∠C=∠D,可以證明∠A=∠F.請完成下面證明過程中的各項“填空”.
證明:∵∠AGB=∠EHF(理由: )
∠AGB= (對頂角相等)
∴∠EHF=∠DGF,∴DB∥EC(理由: )
∴ =∠DBA(兩直線平行,同位角相等)
又∵∠C=∠D,∴∠DBA=∠D,
∴DF∥ (內錯角相等,兩直線平行)
∴∠A=∠F(理由: ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“有趣三角形”,這條中線稱為“有趣中線”。如圖,在三角形ABC中,∠C=90°,較短的一條直角邊BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中線”的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一水果販子在批發(fā)市場按每千克1.8元批發(fā)了若干千克的西瓜進城出售,為方便,他帶了一些零錢備用.他先按市場價售出一些后,又降價出售.售出西瓜千克數x與他手中持有的錢數y元(含備用零錢)的關系如圖所示,結合圖象回答下列問題:
(1)農民自帶的零錢是多少?
(2)降價前每千克西瓜出售的價格是多少?
(3)隨后他按每千克下降0.5元將剩余的西瓜售完,這時他手中的錢(含備用的錢)是450元,問他一共批發(fā)了多少千克的西瓜?
(4)請問這個水果販子一共賺了多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠現有甲種原料3600kg,乙種原料2410kg,計劃利用這兩種原料生產A,B兩種產品共500件,產品每月均能全部售出.已知生產一件A產品需要甲原料9kg和乙原料3kg;生產一件B種產品需甲種原料4kg和乙種原料8kg.
(1)設生產x件A種產品,寫出x應滿足的不等式組.
(2)問一共有幾種符合要求的生產方案?并列舉出來.
(3)若有兩種銷售定價方案,第一種定價方案可使A產品每件獲得利潤1.15萬元,B產品每件獲得利潤1.25萬元;第二種定價方案可使A和B產品每件都獲得利潤1.2萬元;在上述生產方案中哪種定價方案盈利最多?(請用數據說明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把長方形ABCD旋轉到長方形GBEF的位置,此時點A,B,E在一條直線上.
(1)指出這個過程中的旋轉中心,并說明旋轉角度數是多少;
(2)指出圖中的對應線段;
(3)連接BD,BF,DF,判斷△DBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB于點E.
(1)求證:AC=AE;
(2)若點E為AB的中點,CD=4,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】去學校食堂就餐,經常會在一個買菜窗口前等待,經調查發(fā)現,同學的舒適度指數y與等時間x(分)之間滿足反比例函數關系,如下表:
等待時間x | 1 | 2 | 5 | 10 | 20 |
舒適度指數y | 100 | 50 | 20 | 10 | 5 |
已知學生等待時間不超過30分鐘
(1)求y與x的函數關系式,并寫出自變量x的取值范圍.
(2)若等待時間8分鐘時,求舒適度的值;
(3)舒適度指數不低于10時,同學才會感到舒適.請說明,作為食堂的管理員,讓每個在窗口買菜的同學最多等待多少時間?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com