如圖,⊙A與x軸交于B(2,0)、C(4,0)兩點(diǎn),OA=3,點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),PD切⊙O于點(diǎn)D,則PD的最小值是______.
連接AP,如圖所示:

∵B(2,0)、C(4,0),
∴OB=2,OC=4,
∴BC=OC-OB=4-2=2,即圓A的直徑為2,
∴AD=1,OA=OB+AB=2+1=3,
又∵DP為圓A的切線,
∴AD⊥DP,
∴∠ADP=90°,
設(shè)P(0,y),
在Rt△AOP中,OA=3,OP=|y|,
根據(jù)勾股定理得:AP2=OA2+OP2=9+y2
在Rt△APD中,AD=1,
根據(jù)勾股定理得:PD2=AP2-AD2=9+y2-1=y2+8,
則PD=
y2+8
,
則當(dāng)y=0時(shí),PD達(dá)到最小值,最小值為
8
=2
2

故答案為:2
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知PA是⊙O的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10cm,PB=5cm,則⊙O的半徑長(zhǎng)為( 。
A.15cmB.10cmC.7.5cmD.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB切⊙O于點(diǎn)A、B,AC是⊙O的直徑,且∠BAC=35°,則∠P=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)B、C、D都在⊙O上,過點(diǎn)C作ACBD交OB延長(zhǎng)線于點(diǎn)A,連接CD,且∠CDB=∠OBD=30°,DB=6
3
cm.
(1)求證:AC是⊙O的切線;
(2)求⊙O的半徑長(zhǎng);
(3)求由弦CD、BD與弧BC所圍成的陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知AB是⊙O的直徑,PC切⊙O于點(diǎn)C,∠PCB=35°,則∠B等于______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線MA交⊙O于A、B兩點(diǎn),BC是⊙O的直徑,點(diǎn)D在⊙O上,且BD平分∠MBC,過D作DE⊥MA,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若DE+BE=12,⊙O的直徑是20,求AB和BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

自圓外一點(diǎn)向圓引兩條切線所形成的夾角為60°,若切線長(zhǎng)為5cm,則此圓的半徑為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:z圖,AB是⊙了的直徑,Ah是弦,∠BAh的平分線與⊙了的交點(diǎn)為D,DE⊥Ah,與Ah的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線DE是⊙了的切線;
(2)若了E與AD交于點(diǎn)u,h了s∠BAh=
4
5
,求
Du
Au
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,AC是弦,直線CE和⊙O切于點(diǎn)C,AD⊥CE,垂足為D.
求證:AC2=AD•AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案