【題目】正數(shù)x的兩個(gè)平方根分別為3a2a+7,則44x的立方根為( 。

A.5B.5C.13D.10

【答案】A

【解析】

根據(jù)平方根的性質(zhì)求出a的值,進(jìn)而求出x的值,從而求出44-x的值.

解:由題意可知:3-a+2a+7=0,
a=-10,
3-a=13
x=132=169,
44-x=-125,
-125的立方根為-5,
故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ABC和∠ACB的角平分線BE、CF相交于點(diǎn)I

(1)∠BIC=120°,求∠A的度數(shù)

(2)當(dāng)∠BIC=135°,則∠A= 。

(3)請(qǐng)你用數(shù)學(xué)表達(dá)式歸納出∠BIC與∠A的關(guān)系式,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校車安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道L上確定點(diǎn)D,使CD與L垂直,測(cè)得CD的長(zhǎng)等于24米,在L上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(zhǎng)(結(jié)果保留根號(hào));
(2)已知本路段對(duì)校車限速為45千米/小時(shí),若測(cè)得某輛校車從A到B用時(shí)2秒,這輛校車是否超速?說(shuō)明理由.(參考數(shù)據(jù): ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,F(xiàn)CD上一點(diǎn),∠EFD=60°,AEC=2CEF,若6°<BAE<15°,C的度數(shù)為整數(shù),則∠C的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上與表示數(shù)1的點(diǎn)的距離為8個(gè)單位長(zhǎng)度的點(diǎn)所表示的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(  )

A.點(diǎn)P(3,﹣5)x軸的距離為﹣5

B.在平面直角坐標(biāo)系內(nèi),(1,2)(2,﹣1)表示同一個(gè)點(diǎn)

C.x=0,則點(diǎn)P(xy)x軸上

D.在平面直角坐標(biāo)系中,有且只有一個(gè)點(diǎn)既在x軸上,又在y軸上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種商品因換季準(zhǔn)備打折出售,如果按照原定價(jià)的七五折出售,每件將賠25元,而按原定價(jià)的九折出售,每件將賺20元,則這種商品的原定價(jià)是(

A.200B.300C.320D.360

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線a0)與x軸交于A3,0)、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸是直線x=1D為拋物線的頂點(diǎn),點(diǎn)EyC點(diǎn)的上方,且CE=

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

2)求證:直線DEACD外接圓的切線;

3)在直線AC上方的拋物線上找一點(diǎn)P,使,求點(diǎn)P的坐標(biāo);

4)在坐標(biāo)軸上找一點(diǎn)M,使以點(diǎn)B、C、M為頂點(diǎn)的三角形與ACD相似,直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案