【題目】為倡導(dǎo)“低碳生活”,人們常選擇以自行車作為代步工具、圖(1)所示的是一輛自行車的實物圖.圖(2)是這輛自行車的部分幾何示意圖,其中車架檔AC與CD的長分別為45cm和60cm,且它們互相垂直,座桿CE的長為20cm.點A、C、E在同一條直線上,且∠CAB=75°.(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732)
(1)求車架檔AD的長;
(2)求車座點E到車架檔AB的距離(結(jié)果精確到1cm).

【答案】
(1)解:∵在Rt△ACD中,AC=45cm,DC=60cm

∴AD= =75(cm),

∴車架檔AD的長是75cm;


(2)解:過點E作EF⊥AB,垂足為F,

∵AE=AC+CE=(45+20)cm,

∴EF=AEsin75°=(45+20)sin75°≈62.7835≈63(cm),

∴車座點E到車架檔AB的距離約是63cm.


【解析】(1)在Rt△ACD中利用勾股定理求AD即可.(2)過點E作EF⊥AB,在RT△EFA中,利用三角函數(shù)求EF=AEsin75°,即可得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7分某省現(xiàn)在正處于50年不遇的干旱某中學(xué)八年級2班共50名同學(xué),開展了“獻愛心”捐款活動,活動結(jié)束后,班長將捐款情況進行了統(tǒng)計,并繪制成了如圖所示的統(tǒng)計圖

1求50名同學(xué)的捐款平均數(shù)

2該中學(xué)共有學(xué)生2000名,請根據(jù)該班的捐款情況,估計這所中學(xué)的捐款數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+mx+n的圖象經(jīng)過點A(2,3),對稱軸為直線x=1,一次函數(shù)y=kx+b的圖象經(jīng)過點A,交x軸于點P,交拋物線于另一點B,點A、B位于點P的同側(cè).

(1)求拋物線的解析式;
(2)若PA:PB=3:1,求一次函數(shù)的解析式;
(3)在(2)的條件下,當(dāng)k>0時,拋物線的對稱軸上是否存在點C,使得⊙C同時與x軸和直線AP都相切,如果存在,請求出點C的坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由兩個正方形組成的長方形花壇ABCD,小明從頂點A沿著花壇間小路直到走到長邊中點O,再從中點O走到正方形OCDF的中心O1,再從中心O1走到正方形O1GFH的中心O2,又從中心O2走到正方形O2IHJ的中心O3,再從中心O32走到正方形O3KJP的中心O4,一共走了31m,則長方形花壇ABCD的周長是(  )

A. 36 m B. 48 m C. 96 m D. 60 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形中,對角線交于點, 延長線上的點,且是等邊三角形.

(1)求證:四邊形是菱形;

(2)若,求證:四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兒童節(jié)前,某玩具商店根據(jù)市場調(diào)查,用2500元購進一批兒童玩具,上市后很快脫銷,接著又用4500元購進第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了10元.

1)求第一批玩具每套的進價是多少元?

2)如果這兩批玩具每套售價相同,且全部售完后總利潤不低于25%,那么每套售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊梅是漳州的特色時令水果,楊梅一上市,水果店的老板用1200元購進一批楊梅,很快售完;老板又用2500元購進第二批楊梅,所購件數(shù)是第一批的2倍,但進價比第一批每件多了5元.
(1)第一批楊梅每件進價多少元?
(2)老板以每件150元的價格銷售第二批楊梅,售出80%后,為了盡快售完,決定打折促銷,要使第二批楊梅的銷售利潤不少于320元,剩余的楊梅每件售價至少打幾折?(利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:

(1)169(a-b)2-196(a+b)2;

(2)m4-2m2n2+n4;

(3)m2(m-1)-4(1-m2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,AB8,BC6,點DAC邊上的動點,點D從點C出發(fā),沿邊CA向點A運動,當(dāng)運動到點A時停止,若設(shè)點D運動的時間為t秒.點D運動的速度為每秒1個單位長度.

(1)當(dāng)t2時,CD , AD

(2)求當(dāng)t為何值時,△CBD是直角三角形,說明理由;

(3)求當(dāng)t為何值時,△CBD是以BDCD為底的等腰三角形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案