【題目】某商家計劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共20臺,空調(diào)的采購單價y1(元/臺)與采購數(shù)量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購單價y2(元/臺)與采購數(shù)量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購單價不低于1200元,問該商家共有幾種進貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問采購空調(diào)多少臺時總利潤最大?并求最大利潤.
【答案】(1)5 (2)采購空調(diào)15臺時,獲得總利潤最大,最大利潤值為10650元.
【解析】
試題(1)由題意可設(shè)空調(diào)的采購數(shù)量為x臺,則冰箱的采購數(shù)量為(20﹣x)臺,根據(jù)題中的不等量關(guān)系可列出關(guān)于x的不等式組,求解得到x的取值范圍,再根據(jù)空調(diào)臺數(shù)是正整數(shù)確定進貨方案;
(2)按常規(guī)可設(shè)總利潤為W元,根據(jù)總利潤等于空調(diào)和冰箱的利潤之和整理得到W與x的函數(shù)關(guān)系式,整理成頂點式形式,然后根據(jù)二次函數(shù)的性質(zhì)求出最大值即可.
試題解析:(1)設(shè)空調(diào)的采購數(shù)量為x臺,則冰箱的采購數(shù)量為(20﹣x)臺,
由題意得,,
解不等式①得,x≥11,
解不等式②得,x≤15,
所以,不等式組的解集是11≤x≤15,
∵x為正整數(shù),
∴x可取的值為11、12、13、14、15,
所以,該商家共有5種進貨方案;
(2)設(shè)總利潤為W元,
y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,
則W=(1760﹣y1)x1+(1700﹣y2)x2,
=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),
=1760x+20x2﹣1500x+10x2﹣800x+12000,
=30x2﹣540x+12000,
=30(x﹣9)2+9570,
當(dāng)x>9時,W隨x的增大而增大,
∵11≤x≤15,
∴當(dāng)x=15時,W最大值=30(15﹣9)2+9570=10650(元),
答:采購空調(diào)15臺時,獲得總利潤最大,最大利潤值為10650元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組的同學(xué)在一次活動中,為了測量某建筑物AB的高,他們來到另一建筑物CD上的點C處進行觀察,如圖所示,他們測得建筑物AB頂部A的仰角為30°,底部B的俯角為45°,已知建筑物AB、CD的距離DB為12m,求建筑物AB的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)如果點P是x軸上的一點,且△ABP的面積是3,求點P的坐標;
(3)若P是坐標軸上一點,且滿足PA=OA,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點A(﹣3,﹣3).
(1)求正比例函數(shù)和反比例函數(shù)的表達式;
(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點B(﹣6,m),與x軸交于點C,求m的值和直線BC的表達式;
(3)在(2)的條件下,直線BC與y軸交于點D,求以點A,B,D為頂點的三角形的面積;
(4)在(3)的條件下,點A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與x、y軸分別交于點A、C.拋物線的圖象經(jīng)過A、C和點B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當(dāng)D與直線AC的距離DE最大時,求出點D的坐標,并求出最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一漁船上的漁民在A處看見燈塔M在北偏東60°方向,這艘漁船以28海里/時的速度向正東方向航行,半小時后到達B處,在B處看見燈塔M在北偏東15°方向,此時燈塔M與漁船的距離是( )
A. 7海里 B. 14海里 C. 7海里 D. 14海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).
(1)求一次函數(shù)和反比例函數(shù)解析式.
(2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
(3)根據(jù)圖象,直接寫出不等式﹣x+b>的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com