【題目】如圖:已知ABC是等邊三角形,DEF分別是AB、ACBC邊的中點,M是直線BC上的任意一點,在射線EF上截取EN,使EN=FM,連接DM、MN、DN

1)如圖①,當點M在點B左側時,請你按已知要求補全圖形,并判斷DMN是怎樣的特殊三角形(不要求證明);

2)請借助圖②解答:當點M在線段BF上(與點BF不重合),其它條件不變時,(1)中的結論是否依然成立?若成立,請證明;若不成立,請說明理由;

3)請借助圖③解答:當點M在射線FC上(與點F不重合),其它條件不變時,(1)中的結論是否仍然成立?不要求證明.

【答案】(1)圖詳見解析,DMN是等邊三角形;(2)DMN仍是等邊三角形,證明詳見解析;(3)DMN不是等邊三角形.

【解析】

(1)連接DF,根據(jù)等邊三角形的性質與三角形中位線平行于第三邊并且等于第三邊的一半的性質可以證明DF=BD=EF=BF,然后證明BM=FN,∠MBD=∠NFD=120°,從而證明△BDM與△FDN全等,根據(jù)全等三角形對應邊相等可得MD=DN,對應角相等可得∠MDB=∠NDF,然后證明∠MDN=∠BDF=60°,所以△DMN是等邊三角形;(2)連接DF,根據(jù)等邊三角形的性質與三角形中位線平行于第三邊并且等于第三邊的一半的性質可以證明DF=BD=EF=BF,然后證明BM=FN,∠MBD=∠NFD=60°,從而證明△BDM與△FDN全等,根據(jù)全等三角形對應邊相等可得MD=DN,對應角相等可得∠MDB=∠NDF,然后證明∠MDN=∠BDF=60°,所以△DMN是等邊三角形; (3)沿用前兩問的思路,顯然不能證明△CDM與△FDN全等,所以△DMN不是等邊三角形.

解:(1)如圖①,

DMN是等邊三角形.

2)如圖②,當M在線段BF上(與點B、F重合)時,DMN仍是等邊三角形.

證明:連接DF,

∵△ABC是等邊三角形,

∴∠ABC=60°,AB=AC=BC

D、E、F分別是ABC三邊的中點,

DE、DF、EF是等邊三角形的中位線.

DF=ACBD=AB,EF=AB,BF=BC

∴∠BDF=A=DFE=60°DF=BF=EF,

∴∠ABC=DFE

FM=EN,

BM=NF,

∴△BDM≌△FDN,

∴∠BDM=FDNMD=ND,

∴∠BDM+MDF=FDN+MDF=MDN=60°,

DMN是等邊三角形;

3)如圖③或圖④,當點M在射線FC上(與點F不重合)時,(1)中的結論不成立,

DMN不是等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】林華在2018年共兩次到某商場按照標價購買了A,B兩種商品,其購買情況如下表:

購買A商品的數(shù)量(個

購買B商品的數(shù)量(個

購買兩種商品的總費用(元)

第一次購買

6

5

1140

第二次購買

3

7

1110

(1)分別求出A、B兩種商品的標價。

(2)最近商場實行2019新春的促銷活動,A,B兩種商品都打折且折扣數(shù)相同,于是林華前往商場花1062元又購買了9A商品和8B商品,試問本次促銷活動中A,B商品的折扣數(shù)都為多少?在本次購買中,林華共節(jié)約了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】保護視力要求人寫字時眼睛和筆端的距離應超過30cm,圖1是一位同學的坐姿,把他的眼睛B,肘關節(jié)C和筆端A的位置關系抽象成圖2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的這種坐姿符合保護視力的要求嗎?請說明理由.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情景:
如圖,在直角坐標系xOy中,點A、B為二次函數(shù)y=ax2(a>0)圖象上的兩點,且點A、B的橫坐標分別為m、n(m>n>0),連接OA、AB、OB.設△AOB的面積為S時,解答下列問題:

(1)探究:當a=1時,

mn

m﹣n

S

m=3,n=1

3

2

m=5,n=2

10

3

當a=2時,

2mn

m﹣n

S

m=3,n=1

6

2

m=5,n=2

20

3


(2)歸納證明:對任意m、n(m>n>0),猜想S=(用a,m,n表示),并證明你的猜想.
(3)拓展應用:
若點A、B的橫坐標分別為m、n(m>0>n),其它條件不變時,△AOB的面積S=(用a,m,n表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E為邊AB的中點,將△CBE沿CE翻折得到△CFE,連接AF.若∠EAF=70°,那么∠BCF=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ABC=45°,CDAB于點D,BE平分∠ABC,且BEAC于點E,與CD相交于點F,H是邊BC的中點,連接 DH BE相交于點 G,若GE=3,則BF=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AC=BC,ACB=90°,點 D,E分別在AB,BC上,且AD=BE,BD=AC,過EEFABF.

(1)求證:FED=CED;

(2) BF=,直接寫出 CE的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市三景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學校對九(1)班學生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調查,調查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調查結果繪制了不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖如下:
請結合圖中信息解答下列問題:
(1)九(1)班現(xiàn)有學生人,在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數(shù)為;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校九年級有1000名學生,求計劃“五一”小長假隨父母到這三個景區(qū)游玩的學生多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶樱蚩梢郧蟪鲆恍┎灰(guī)則圖形的面積.

(1)如圖1,是將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的方法計算這個圖形的面積,你能發(fā)現(xiàn)什么結論,請寫出來.

(2)如圖2,是將兩個邊長分別為a和b的正方形拼在一起,B、C、G三點在同一直線上,連接BD和BF,若兩正方形的邊長滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?

查看答案和解析>>

同步練習冊答案