【題目】勾股定理揭示了直角三角形三邊之間的關(guān)系,其中蘊(yùn)含著豐富的科學(xué)知識(shí)和人文價(jià)值.如圖所示,是一棵由正方形和含角的直角三角形按一定規(guī)律長(zhǎng)成的勾股樹,樹的主干自下而上第一個(gè)正方形和第一個(gè)直角三角形的面積之和為,第二個(gè)正方形和第二個(gè)直角三角形的面積之和為,…,第個(gè)正方形和第個(gè)直角三角形的面積之和為.
設(shè)第一個(gè)正方形的邊長(zhǎng)為1.
請(qǐng)解答下列問題:
(1)______.
(2)通過(guò)探究,用含的代數(shù)式表示,則______.
【答案】 (為整數(shù))
【解析】
根據(jù)正方形的面積公式求出面積,再根據(jù)直角三角形三條邊的關(guān)系運(yùn)用勾股定理求出三角形的直角邊,求出S1,然后利用正方形與三角形面積擴(kuò)大與縮小的規(guī)律推導(dǎo)出公式.
解:(1)∵第一個(gè)正方形的邊長(zhǎng)為1,
∴正方形的面積為1,
又∵直角三角形一個(gè)角為30°,
∴三角形的一條直角邊為,另一條直角邊就是,
∴三角形的面積為,
∴S1=;
(2)∵第二個(gè)正方形的邊長(zhǎng)為,它的面積就是,也就是第一個(gè)正方形面積的,
同理,第二個(gè)三角形的面積也是第一個(gè)三角形的面積的,
∴S2=(),依此類推,S3=(),即S3=(),
Sn=(n為整數(shù)).
故答案為:(1) ;(2)(為整數(shù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,.動(dòng)點(diǎn)在線段上移動(dòng),過(guò)點(diǎn)作直線與軸垂直.
設(shè)中位于直線左側(cè)部分的面積為,寫出與之間的函數(shù)關(guān)系式;
試問是否存在點(diǎn),使直線平分的面積?若有,求出點(diǎn)的坐標(biāo);若無(wú),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家1至6月份的用水量統(tǒng)計(jì)如圖所示,關(guān)于這組數(shù)據(jù),下列說(shuō)法錯(cuò)誤的是( ).
A、眾數(shù)是6噸 B、平均數(shù)是5噸 C、中位數(shù)是5噸 D、方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑的與邊交于點(diǎn),過(guò)點(diǎn)作交于點(diǎn),連接.
求證:是的切線;
若的半徑為,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:⊙O為△ABC的外接圓,AB=AC,E是AB的中點(diǎn),連OE,OE=,BC=8,則⊙O的半徑為( 。
A. 3 B. C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=60°,OA=OB,動(dòng)點(diǎn)C從點(diǎn)O出發(fā),沿射線OB方向移動(dòng),以AC為邊在右側(cè)作等邊△ACD,連接BD,則BD所在直線與OA所在直線的位置關(guān)系是( 。
A. 平行 B. 相交 C. 垂直 D. 平行、相交或垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)P是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點(diǎn)D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,AB>AC,AD是中線,AE是角平分線,CF⊥AE于點(diǎn)F,連接DF,則①DF//AB;②∠DAE=(∠ACB-∠ABC);③DF= (AB-AC);④ (AB-AC)<AD< (AB+AC).其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國(guó)古代算法的扛鼎之作.《九章算術(shù)》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?”
譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤.問雀、燕毎只各重多少斤?”
設(shè)每只雀重x斤,每只燕重y斤,可列方程組為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com