【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線過點(diǎn)且與軸平行,直線過點(diǎn)且與軸平行,直線相交于.點(diǎn)為直線上一點(diǎn),反比例函數(shù)的圖象過點(diǎn)且與直線相交于點(diǎn)

(1)若點(diǎn)與點(diǎn)重合,求的值;

(2)連接、、,若的面積為面積的2倍,求點(diǎn)的坐標(biāo);

(3)當(dāng)時,在軸上是否存在一點(diǎn) ,使是等腰直角三角形?如果存在,直接寫出點(diǎn)坐標(biāo):若不存在,說明理由.

【答案】12;(2)點(diǎn)E的坐標(biāo)為(,2)或(3,2)時的面積為面積的2倍;(3)當(dāng)時,G0,1)或(0, ),此時是等腰直角三角形

【解析】

1)根據(jù)平行線的性質(zhì)得到點(diǎn)P的坐標(biāo),由點(diǎn)E與點(diǎn)P重合得到點(diǎn)E的坐標(biāo),將點(diǎn)E的坐標(biāo)代入中即可求出k的值;

2)根據(jù)題意畫出圖形,用k表示點(diǎn)E及點(diǎn)F的坐標(biāo),得到對應(yīng)線段的長度,分三種情況利用的面積為面積的2倍分別求出k的值,即可得到點(diǎn)E的坐標(biāo);

3)由知點(diǎn)E在點(diǎn)P的右邊,點(diǎn)F在點(diǎn)P的上邊,畫出圖象,設(shè)點(diǎn)E的坐標(biāo)及點(diǎn)F的坐標(biāo),分三種情況,根據(jù)等腰直角三角形的性質(zhì)證明全等即可求出答案.

1)由題意得點(diǎn)P(1,2)

∵點(diǎn)與點(diǎn)重合,

E1,2),

的圖象過點(diǎn),

k=;

2)①當(dāng)0<k<2時,如圖1,

根據(jù)題意知:四邊形OAPB是矩形,BP=1,AP=2,

∵點(diǎn)E、F都在反比例函數(shù)的圖象上,

E,2),F1,k),

BE=PE=1-,AF=k,PF=2-k,

,

,

,

,

解得 (舍去),

E,2);

當(dāng)k=2時,△OEF不存在;

②當(dāng)k>2時,如圖2,過點(diǎn)Ex軸的垂線EC,垂足為C,過點(diǎn)Fy軸的垂線FD,垂足為DECFD相交于點(diǎn)H,則四邊形OCHD是矩形,

E,2),F1,k),

PE=-1,PF=k-2

,

∵四邊形PEGF是矩形,

,

,

=,

=2

解得,(舍去),

E3,2),

綜上,點(diǎn)E的坐標(biāo)為(,2)或(32)時的面積為面積的2倍;

3)存在,

k>0

∴點(diǎn)E在點(diǎn)P的右邊,點(diǎn)F在點(diǎn)P的上邊,

①如圖3,∠FEG=90°,EF=EG,

設(shè)Em,2),則F1,2m),

∵∠EPF=EBG,EF=EG,∠FEP=BGE,

∴△FEP≌△EGB

PF=BE,BG=EP

m=2m-2,

m=2,

BG=PE=1,

G0,1);

②如圖4,∠EFG=90°,EF=FG,作FMy軸,

設(shè)Em,2),則F1,2m),

可得△FEP≌△FMG,

FM=FP,MG=EP,

2m-2=1,

m=

F1,3),E,2),

MG=PE=-1=,

G0, );

③∠EGF=90°的情況不存在,

綜上,當(dāng)時,G0,1)或(0, ),此時是等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(x,y),當(dāng)x<0時,點(diǎn)P的變換點(diǎn)P′的坐標(biāo)為(﹣x,y);當(dāng)x≥0時,點(diǎn)P的變換點(diǎn)P′的坐標(biāo)為(﹣y,x).

(1)若點(diǎn)A(2,1)的變換點(diǎn)A′在反比例函數(shù)y=的圖象上,則k=   ;

(2)若點(diǎn)B(2,4)和它的變換點(diǎn)B'在直線y=ax+b上,則這條直線對應(yīng)的函數(shù)關(guān)系式為   BOB′的大小是   度.

(3)點(diǎn)P在拋物線y=x2﹣2x﹣3的圖象上,以線段PP′為對角線作正方形PMP'N,設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)正方形PMP′N的對角線垂直于x軸時,求m的取值范圍.

(4)拋物線y=(x﹣2)2+nx軸交于點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為E,點(diǎn)P在該拋物線上.若點(diǎn)P的變換點(diǎn)P′在拋物線的對稱軸上,且四邊形ECP′D是菱形,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(x>0)(x>0)的圖象分別是.設(shè)點(diǎn)P上,PAy軸交于點(diǎn)A,PBx軸,交于點(diǎn)B,PAB的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在眉山市櫻花節(jié)期間,岷江二橋一端的空地上有一塊矩形的標(biāo)語牌ABCD(如圖).已知標(biāo)語牌的高AB=5m,在地面的點(diǎn)E處,測得標(biāo)語牌點(diǎn)A的仰角為30°,在地面的點(diǎn)F處,測得標(biāo)語牌點(diǎn)A的仰角為75°,且點(diǎn)E,F(xiàn),B,C在同一直線上,求點(diǎn)E與點(diǎn)F之間的距離.(計算結(jié)果精確到0.1m,參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一元二次方程中,兩實(shí)根之和為1的是 ( )

A. x2x10 B. x2x30 C. 2 x2x10 D. x2x50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,E,F(xiàn)分別在邊AC、BC上,滿足AE=CF,連接BE,AF交于點(diǎn)P.

(1)求證:ABE≌△CAF;

(2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn),經(jīng)過AB的直線以每秒1個單位的

速度向下作勻速平移運(yùn)動,與此同時,點(diǎn)P從點(diǎn)B出發(fā),在直線上以每秒1個單位的速度沿直線向右下方向作勻速運(yùn)動.設(shè)它們運(yùn)動的時間為秒.

1)用含的代數(shù)式表示點(diǎn)P的坐標(biāo);

2)過OOCABC,CCD軸于D,問: 為何值時,P為圓心、1為半徑的圓與直線OC相切?并說明此時與直線CD的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的,任意一個實(shí)數(shù)在數(shù)軸上都能找到與之對應(yīng)的點(diǎn),比如我們可以在數(shù)軸上找到與數(shù)字2對應(yīng)的點(diǎn).

1)在如圖所示的數(shù)軸上,畫出一個你喜歡的無理數(shù),并用點(diǎn)表示;

2)(1)中所取點(diǎn)表示的數(shù)字是______,相反數(shù)是_____,絕對值是______,倒數(shù)是_____,其到點(diǎn)5的距離是______

3)取原點(diǎn)為,表示數(shù)字1的點(diǎn)為,將(1)中點(diǎn)向左平移2個單位長度,再取其關(guān)于點(diǎn)的對稱點(diǎn),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏的爸爸買了某項體育比賽的一張門票,她和哥哥兩人都很想去觀看.可門票只有一張,讀九年級的哥哥想了一個辦法,拿了8張撲克牌,將數(shù)字為2,35,9的四張牌給小敏,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小敏和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將兩人抽出的兩張撲克牌數(shù)字相加,如果和為偶數(shù),則小敏去;如果和為奇數(shù),則哥哥去.

1】請用畫樹形圖或列表的方法求小敏去看比賽的概率;

2】哥哥設(shè)計的游戲規(guī)則公平嗎?若公平,請說明理由;若不公平,請你設(shè)計一種公平的游戲規(guī)則.

查看答案和解析>>

同步練習(xí)冊答案