【題目】如圖,是用直尺和圓規(guī)作一個(gè)角等于己知角的方法,即作.這種作法依據(jù)的是( )
A.SSSB.SASC.AASD.ASA
【答案】A
【解析】
由作圖過程分析知OD= OC= OC'= OD', CD= C'D',顯然運(yùn)用的判定方法是SSS。
解:作圖的步驟:
①以O為圓心,任意長為半徑畫弧,分別交OA、OB于點(diǎn)C、D ;
②任意作一點(diǎn)O',作射線O'B',以O' 為圓心,OD長為半徑畫弧,交O'B'于點(diǎn)D' ;
③以D'為圓心,CD長為半徑畫弧,交前弧于點(diǎn)C',
④過點(diǎn)C'作射線O'A'.
分別連接CD、C'D'(作圖完畢).
由作圖可知
OD= OC= O'C'= O'D', CD= C'D'
∴在△DOC和△D'O'C'中
∴△DOC≌△D'O'C'(SSS)
∴∠AOB = ∠A'O'B'
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,為邊上一動(dòng)點(diǎn),于,于,為中點(diǎn),則的最小值為( )
A.B.4C.5D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)正比例函數(shù)的圖象經(jīng)過點(diǎn)(﹣2,1),則這個(gè)圖象也一定經(jīng)過點(diǎn)( )
A.(﹣ ,1)
B.(2,﹣1)
C.(﹣1,2)
D.(1, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CE和CF分別平分∠ACB和△ABC的外角∠ACD,一動(dòng)點(diǎn)O在AC上運(yùn)動(dòng),過點(diǎn)O作BD的平行線與∠ACB和∠ACD的角平分線分別交于點(diǎn)E和點(diǎn)F.
(1)求證:當(dāng)點(diǎn)O運(yùn)動(dòng)到什么位置時(shí),四邊形AECF為矩形,說明理由;
(2)在第(1)題的基礎(chǔ)上,當(dāng)△ABC滿足什么條件時(shí),四邊形AECF為正方形,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國夢校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績較好;
(3)計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測量工具和所學(xué)的幾何知識(shí)測量小雁塔的高度,由于觀測點(diǎn)與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進(jìn)行兩次測量,于是在陽光下,他們首先利用影長進(jìn)行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時(shí)木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點(diǎn)F,使得A、C、F三點(diǎn)在同一直線上,并測得DF=2.5米.已知圖中所有點(diǎn)均在同一平面內(nèi),木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:探究與應(yīng)用
(1)如圖1,在正方形ABCD中,AB=2,點(diǎn)E是邊AD的中點(diǎn),請?jiān)趯蔷AC上找一點(diǎn)P,使得PE+PD的值最小,并求出這個(gè)最小值;(不用寫作法,保留作圖痕跡)
(2)如圖2,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是邊BC的中點(diǎn),若點(diǎn)P是邊AB上一動(dòng)點(diǎn),當(dāng)△PED的周長最小時(shí),求BP的長度;
問題解決:
(3)某市規(guī)劃在市中心廣場內(nèi)修建一個(gè)矩形的活動(dòng)中心,如圖3,矩形OABC是它的規(guī)劃圖紙,其中A為入口,已知OA=30,OC=20,點(diǎn)E是邊AB的中點(diǎn),以頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系,點(diǎn)D是邊OA上一點(diǎn),若將△ABD沿BD翻折,點(diǎn)A恰好落在邊BC上的點(diǎn)F處,在點(diǎn)F處設(shè)一出口,點(diǎn)M、N分別是邊OA、OC上的點(diǎn),現(xiàn)規(guī)劃在點(diǎn)M、N、F、E四處各安置一個(gè)健身器材,并依次修建MN、NF、FE及EM四條小路,則是否存在點(diǎn)M、N,使得這四條小路的總長度最小?若存在,求出這個(gè)最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為 ,連接AC,AE平分∠CAD,交BC的延長線于點(diǎn)E,F(xiàn)A⊥AE,交CB的延長線于點(diǎn)F,則EF的長為( )
A.2
B.4
C.2
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com