(2009•三明)如圖,已知圓錐的高為4,底面圓的直徑為6,則此圓錐的側(cè)面積是( )

A.12π
B.15π
C.24π
D.30π
【答案】分析:利用勾股定理可求得圓錐底面半徑,那么圓錐的側(cè)面積=底面周長×母線長÷2.
解答:解:底面圓的直徑為6,則底面半徑=3,底面周長=6π.由勾股定理得:母線長=5,
∴圓錐的側(cè)面積=×6π×5=15π,故選B.
點評:本題利用了勾股定理,圓的周長公式和扇形面積公式求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年3月湖北省鄂州市鄂城區(qū)燕磯中學九年級(下)月考數(shù)學試卷(解析版) 題型:解答題

(2009•三明)如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c與x軸交于A(1,0)、B(5,0)兩點.
(1)求拋物線的解析式和頂點C的坐標;
(2)設拋物線的對稱軸與x軸交于點D,將∠DCB繞點C按順時針方向旋轉(zhuǎn),角的兩邊CD和CB與x軸分別交于點P、Q,設旋轉(zhuǎn)角為α(0°<α≤90°).
①當α等于多少度時,△CPQ是等腰三角形?
②設BP=t,AQ=s,求s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•三明)如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c與x軸交于A(1,0)、B(5,0)兩點.
(1)求拋物線的解析式和頂點C的坐標;
(2)設拋物線的對稱軸與x軸交于點D,將∠DCB繞點C按順時針方向旋轉(zhuǎn),角的兩邊CD和CB與x軸分別交于點P、Q,設旋轉(zhuǎn)角為α(0°<α≤90°).
①當α等于多少度時,△CPQ是等腰三角形?
②設BP=t,AQ=s,求s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省廈門市湖里區(qū)九年級下適應性考試數(shù)學模擬試卷(5)(解析版) 題型:解答題

(2009•三明)如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c與x軸交于A(1,0)、B(5,0)兩點.
(1)求拋物線的解析式和頂點C的坐標;
(2)設拋物線的對稱軸與x軸交于點D,將∠DCB繞點C按順時針方向旋轉(zhuǎn),角的兩邊CD和CB與x軸分別交于點P、Q,設旋轉(zhuǎn)角為α(0°<α≤90°).
①當α等于多少度時,△CPQ是等腰三角形?
②設BP=t,AQ=s,求s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省三明市中考數(shù)學試卷(解析版) 題型:解答題

(2009•三明)如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c與x軸交于A(1,0)、B(5,0)兩點.
(1)求拋物線的解析式和頂點C的坐標;
(2)設拋物線的對稱軸與x軸交于點D,將∠DCB繞點C按順時針方向旋轉(zhuǎn),角的兩邊CD和CB與x軸分別交于點P、Q,設旋轉(zhuǎn)角為α(0°<α≤90°).
①當α等于多少度時,△CPQ是等腰三角形?
②設BP=t,AQ=s,求s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《圖形的平移》(01)(解析版) 題型:選擇題

(2009•三明)如圖,△ABC是邊長為2的等邊三角形,將△ABC沿射線BC向右平移得到△DCE,連接AD、BD,下列結(jié)論錯誤的是( )

A.AD∥BC
B.AC⊥BD
C.四邊形ABCD面積為4
D.四邊形ABED是等腰梯形

查看答案和解析>>

同步練習冊答案