(2009•攀枝花)如圖所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分線BD交AC于點D,點E是線段AB上的一點,以BE為直徑的圓O過點D.
(1)求證:AC是圓O的切線;
(2)求AE的長.

【答案】分析:(1)連接OD,證OD⊥AC即可;由于OB=OD,且BD平分∠ABC,利用角平分線的定義以及等邊對等角可求得∠ODB=∠OBD=∠CBD,由此可證得OD∥BC,而BC⊥AC,即OD⊥AC,由此得證.
(2)根據(jù)∠DAO的正切值,可求出AD、OD的比例關(guān)系,可用未知數(shù)表示出兩者的長,進(jìn)而可求得BE、AE的表達(dá)式,由于AE+BE=AB=5,由此可求出未知數(shù)的值,也就得到了AE的長.
解答:(1)證明:連接OD,
∵OD=OB,
∴∠ODB=∠OBD;
∵BD平分∠ABC,
∴∠OBD=∠CBD,即∠ODB=∠CBD,
∴OD∥BC,
∵BC⊥AC,
∴OD⊥AC;
又∵點D在⊙O上,
∴AC是⊙O的切線.

(2)解:Rt△ABC中,AC=4,BC=3,則AB=5;
在Rt△AOD中,設(shè)AD=4x,則OD=3x,OA=5x;
∵OE=OD=3x,
∴AE=OA-OE=2x,
由于AB=AE+BE=2x+6x=5,故x=
∴AE=2x=
點評:此題主要考查了切線的判定方法,要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2009•攀枝花)將點P(-2,2)沿x軸的正方向平移4個單位得到點P'的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2009•攀枝花)如圖所示,已知OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為坐標(biāo)原點,點A在x軸上,點C在y軸上,且OA=15,OC=9,在邊AB上選取一點D,將△AOD沿OD翻折,使點A落在BC邊上,記為點E.
(1)求DE所在直線的解析式;
(2)設(shè)點P在x軸上,以點O、E、P為頂點的三角形是等腰三角形,問這樣的點P有幾個,并求出所有滿足條件的點P的坐標(biāo);
(3)在x軸、y軸上是否分別存在點M、N,使四邊形MNED的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•攀枝花)如圖所示,已知實數(shù)m是方程x2-8x+16=0的一個實數(shù)根,拋物線y=x2+bx+c交x軸于點A(m,0)和點B,交y軸于點C(0,m).
(1)求這個拋物線的解析式;
(2)設(shè)點D為線段AB上的一個動點,過D作DE∥BC交AC于點E,又過D作DF∥AC交BC于點F,當(dāng)四邊形DECF的面積最大時,求點D的坐標(biāo);
(3)設(shè)△AOC的外接圓為⊙G,若M是⊙G的優(yōu)弧ACO上的一個動點,連接AM、OM,問在這個拋物線位于y軸左側(cè)的圖象上是否存在點N,使得∠NOB=∠AMO?若存在,試求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省攀枝花市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•攀枝花)已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則在同一坐標(biāo)系中,一次函數(shù)y=ax+c和反比例函數(shù)y=的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•攀枝花)已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則在同一坐標(biāo)系中,一次函數(shù)y=ax+c和反比例函數(shù)y=的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案