(2006•錦州)如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M、N(點(diǎn)M在點(diǎn)N的上方).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運(yùn)動(dòng)時(shí)間為t秒(0≤t≤6),試求S與t的函數(shù)表達(dá)式;
(3)在題(2)的條件下,t為何值時(shí),S的面積最大?最大面積是多少?

【答案】分析:(1)已知了菱形的邊長,過A作AD⊥OC于D,在直角三角形OAD中,可根據(jù)OA的長和∠AOC的度數(shù)求出OD和AD的長,即可得出A點(diǎn)坐標(biāo),將A的坐標(biāo)向右平移4個(gè)單位即可得出B點(diǎn)坐標(biāo).
(2)當(dāng)l過A點(diǎn)時(shí),ON=OD=2,因此t=2;當(dāng)l過C點(diǎn)時(shí),ON=OC=4,此時(shí)t=4.因此本題可分三種情況:
①當(dāng)0≤t≤2時(shí),直線l與OA、OC兩邊相交,此時(shí)ON=t,MN=t,根據(jù)三角形的面積公式即可得出S,t的函數(shù)關(guān)系式.
②當(dāng)2<t≤4時(shí),直線l與AB、OC兩邊相交,此時(shí)三角形OMN中,NM的長與AD的長相同,而ON=t,由此就不難得出S,t的函數(shù)關(guān)系式.
③當(dāng)4<t≤6時(shí),直線l與AB、BC兩邊相交,可設(shè)直線l與x軸交點(diǎn)為H,那么三角形OMN可以MN為底,OH為高來計(jì)算其面積.OH的長為t,而MN的長可通過MH-NH來求得,其中,MH可用OH和∠MOH的正切值求出,HN可用CH的長和∠BCH的正切值求出.據(jù)此可得出關(guān)于S,t的函數(shù)關(guān)系式.
(3)根據(jù)(2)中各函數(shù)的性質(zhì)和各自的自變量的取值范圍可得出S的最大值及對(duì)應(yīng)的t的值.
解答:解:(1)∵四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(4,0),
∴OA=AB=BC=CO=4.
過點(diǎn)A作AD⊥OC于D.
∵∠AOC=60°,
∴OD=2,AD=2
∴A(2,2),B(6,2).(3分)

(2)直線l從y軸出發(fā),沿x軸正方向運(yùn)動(dòng)與菱形OABC的兩邊相交有三種情況:
①0≤t≤2時(shí),直線l與OA、OC兩邊相交,(如圖①).

∵M(jìn)N⊥OC,
∴ON=t.
∴MN=ONtan60°=t.
∴S=ON•MN=t2.(4分)
②當(dāng)2<t≤4時(shí),直線l與AB、OC兩邊相交,(如圖②).

S=ON•MN=×t×2=t.(6分)
③當(dāng)4<t≤6時(shí),直線l與AB、BC兩邊相交,(如圖③).

設(shè)直線l與x軸交于點(diǎn)H.
∵M(jìn)N=2-(t-4)=6-t,
∴S=OH•MN=t(6-t)
=-t2+3t.

(3)由(2)知,當(dāng)0≤t≤2時(shí),S最大=×22=2
當(dāng)2<t≤4時(shí),S最大=
當(dāng)4<t≤6時(shí),配方得S=-(t-3)2+
∴當(dāng)t=3時(shí),函數(shù)S=-t2+3t的最大值是
但t=3不在4<t≤6內(nèi),
∴在4<t≤6內(nèi),函數(shù)S=-t2+3t的最大值不是
而當(dāng)t>3時(shí),函數(shù)S=-t2+3t隨t的增大而減小,
∴當(dāng)4<t≤6時(shí),S<4
綜上所述,當(dāng)t=4時(shí),S最大=
點(diǎn)評(píng):本題為運(yùn)動(dòng)性問題,考查了菱形的性質(zhì)、圖形面積的求法、二次函數(shù)的應(yīng)用等知識(shí).
考查學(xué)生分類討論、數(shù)形結(jié)合的數(shù)學(xué)數(shù)形方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:解答題

(2006•錦州)如圖,我們稱每個(gè)小正方形的頂點(diǎn)為“格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做“格點(diǎn)三角形”.根據(jù)圖形解答下列問題:
(1)圖中的格點(diǎn)△DEF是由格點(diǎn)△ABC通過怎樣的變換得到的?(寫出變換過程)
(2)在圖中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,寫出△DEF各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年遼寧省錦州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•錦州)如圖,△ABC是等腰直角三角形,其中CA=CB,四邊形CDEF是正方形,連接AF、BD.
(1)觀察圖形,猜想AF與BD之間有怎樣的關(guān)系,并證明你的猜想;
(2)若將正方形CDEF繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),使正方形CDEF的一邊落在△ABC的內(nèi)部,請(qǐng)你畫出一個(gè)變換后的圖形,并對(duì)照已知圖形標(biāo)記字母,題(1)中猜想的結(jié)論是否仍然成立?若成立,直接寫出結(jié)論,不必證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年遼寧省錦州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•錦州)如圖,我們稱每個(gè)小正方形的頂點(diǎn)為“格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做“格點(diǎn)三角形”.根據(jù)圖形解答下列問題:
(1)圖中的格點(diǎn)△DEF是由格點(diǎn)△ABC通過怎樣的變換得到的?(寫出變換過程)
(2)在圖中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,寫出△DEF各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年遼寧省錦州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•錦州)如圖,在梯形ABCD中,AD∥BC,AD=a,BC=b.
若E1、F1分別是AB、DC的中點(diǎn),則E1F1=(AD+BC)=(a+b);
若E2,F(xiàn)2分別是E1B,F(xiàn)1C的中點(diǎn),則E2F2=(E1F1+BC)=[(a+b)+b]=(a+3b);當(dāng)E3,F(xiàn)3分別是E2B,F(xiàn)2C的中點(diǎn),則E3F3=(E2F2+BC)=(a+7b);若EnFn分別是En-1,F(xiàn)n-1的中點(diǎn),根據(jù)上述規(guī)律猜想EnFn=    .(n≥1,n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年遼寧省錦州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•錦州)如圖,將邊長為a的正方形ABCD沿直線l按順時(shí)針方向翻滾,當(dāng)正方形翻滾一周時(shí),正方形的中心O所經(jīng)過的路徑長為   

查看答案和解析>>

同步練習(xí)冊(cè)答案