【題目】如圖,點(diǎn)DE分別在AC、BC上,如果測(cè)得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,A、B兩地間的距離。

【答案】135m

【解析】試題分析:此題考查了相似三角形的判定與性質(zhì),相似三角形的對(duì)應(yīng)邊成比例;對(duì)應(yīng)邊成比例,且對(duì)應(yīng)角相等的三角形相似.要注意方程思想的應(yīng)用.

試題解析:∵CD=20mCE=40m,AD=100mBE=20m,

∴AC=CD+AD=120m,BC=CE+BE=60m

∴CEAC=40120=13,CDBC=2060=13

∴CEAC=CDBC

∵∠C=∠C,

∴△CED∽△CAB

∴DEAB=CDBC=13

∴AB=3DE=135m

∴A、B兩地間的距離為135m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BACDEABE,則下列結(jié)論:①DECD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+ACAB,其中正確的是(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將九年級(jí)部分男生擲實(shí)心球的成績(jī)進(jìn)行整理,分成5個(gè)小組(x表示成績(jī),單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績(jī)合格的有多少人?

(2)這部分男生成績(jī)的中位數(shù)落在哪一組?扇形統(tǒng)計(jì)圖中D組對(duì)應(yīng)的圓心角是多少度?

(3)要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績(jī)均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點(diǎn),C、Dl2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x﹣2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.點(diǎn)C是該直線上不同于B的點(diǎn),且CA=AB.

(1)寫出A、B兩點(diǎn)坐標(biāo);

(2)過動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線與直線AB交于點(diǎn)D,若點(diǎn)D不在線段BC上,求m的取值范圍;

(3)若直線BE與直線AB所夾銳角為45°,請(qǐng)直接寫出直線BE的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,RtOAB的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(10),點(diǎn)P為斜邊OB上的一動(dòng)點(diǎn),則PA+PC的最小值_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于xy的二元一次方程組 的解都為正數(shù)。

(1)a的取值范圍;

(2)化簡(jiǎn)|a+1||a1|;

(3)若上述二元一次方程組的解是一個(gè)等腰三角形的一條腰和一條底邊的長(zhǎng),且這個(gè)等腰三角形的周長(zhǎng)為9,求a的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABx軸交于點(diǎn)A40),與y軸交于點(diǎn)B0,-4),若點(diǎn)E在線段AB上,OEOF,且OEOF,連接AF.

1)猜想線段AFBE之間的關(guān)系,并證明;

2)過點(diǎn)OOMEF垂足為D,OM分別交AF、BA的延長(zhǎng)線于點(diǎn)CMBE=,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,AE∥BC,BE交AD于點(diǎn)F,交AC于G,F(xiàn)是AD的中點(diǎn).

(1)求證:四邊形ADCE是平行四邊形;

(2)若EB是∠AEC的角平分線,請(qǐng)寫出圖中所有與AE相等的邊.

查看答案和解析>>

同步練習(xí)冊(cè)答案