【題目】AB為⊙O直徑,C為⊙O上的一點(diǎn),過(guò)點(diǎn)C的切線與AB的延長(zhǎng)線相交于點(diǎn)D,CACD

1)連接BC,求證:BCOB;

2E中點(diǎn),連接CE,BE,若BE2,求CE的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)1+

【解析】

1)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=DCB,根據(jù)CA=CD得到∠CAD=D,證明∠COB=CBO,根據(jù)等角對(duì)等邊證明;
2)連接AE,過(guò)點(diǎn)BBFCE于點(diǎn)F,根據(jù)勾股定理計(jì)算即可.

1)證明:連接OC

AB為⊙O直徑,

∴∠ACB90°,

CD為⊙O切線

∴∠OCD90°

∴∠ACO=∠DCB90°﹣∠OCB,

CACD,

∴∠CAD=∠D

∴∠COB=∠CBO

OCBC

OBBC

2)連接AE,過(guò)點(diǎn)BBFCE于點(diǎn)F,

EAB中點(diǎn),

,

AEBE2

AB為⊙O直徑,

∴∠AEB90°

∴∠ECB=∠BAE45°,

CFBF1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,將一個(gè)矩形紙片放置在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是.點(diǎn)的中點(diǎn),在上取一點(diǎn),將沿翻折,使點(diǎn)落在邊上的點(diǎn)處.

(Ⅰ)求點(diǎn)、的坐標(biāo);

(Ⅱ)如圖②,若點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),過(guò)點(diǎn),設(shè)的長(zhǎng)為,的面積為,試用關(guān)于的代數(shù)式表示;

(Ⅲ)在軸、軸上分別存在點(diǎn)、,使得四邊形的周長(zhǎng)最小,請(qǐng)直接寫(xiě)出四邊形的周長(zhǎng)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1、圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).

1)在圖1中畫(huà)出等腰直角三角形MON,使點(diǎn)N在格點(diǎn)上,且∠MON=90°;

2)在圖2中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)正方形ABCD,使正方形ABCD面積等于(1)中等腰直角三角形MON面積的4倍,并將正方形ABCD分割成以格點(diǎn)為頂點(diǎn)的四個(gè)全等的直角三角形和一個(gè)正方形,且正方形ABCD面積沒(méi)有剩余(畫(huà)出一種即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,過(guò)原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)DOB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DFDE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)EA點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)如圖1,當(dāng)t=3時(shí),求DF的長(zhǎng).

(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過(guò)程中,DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出tan∠DEF的值.

(3)連結(jié)AD,當(dāng)ADDEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好的落實(shí)陽(yáng)光體育運(yùn)動(dòng),學(xué)校需要購(gòu)買一批足球和籃球,已知一個(gè)足球比一個(gè)籃球的進(jìn)價(jià)高30元,買一個(gè)足球和兩個(gè)籃球一共需要300元.

(1)求足球和籃球的單價(jià);

(2)學(xué)校決定購(gòu)買足球和籃球共100個(gè),為了加大校園足球活動(dòng)開(kāi)展力度,現(xiàn)要求購(gòu)買的足球不少于60個(gè),且用于購(gòu)買這批足球和籃球的資金最多為11000元.試設(shè)計(jì)一個(gè)方案,使得用來(lái)購(gòu)買的資金最少,并求出最小資金數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的體育達(dá)標(biāo)情況,隨機(jī)抽取名九年級(jí)學(xué)生進(jìn)行體育達(dá)標(biāo)項(xiàng)目測(cè)試,測(cè)試成績(jī)?nèi)缦卤,?qǐng)根據(jù)表中的信息,解答下列問(wèn)題:

測(cè)試成績(jī)(分)

人數(shù)(人)

1)該校九年級(jí)有名學(xué)生,估計(jì)體育測(cè)試成績(jī)?yōu)?/span>分的學(xué)生人數(shù);

2)該校體育老師要對(duì)本次抽測(cè)成績(jī)?yōu)?/span>分的甲、乙、丙、丁名學(xué)生進(jìn)行分組強(qiáng)化訓(xùn)練,要求兩人一組,求甲和乙恰好分在同一組的概率.(用列表或樹(shù)狀圖方法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,小明計(jì)劃測(cè)量城門(mén)大樓的高度,在點(diǎn)B處測(cè)得樓頂A的仰角為22°,他正對(duì)著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺(tái)D處,并測(cè)得此時(shí)樓頂A的仰角為45°

1)求城門(mén)大樓的高度;

2)每逢重大節(jié)日,城門(mén)大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請(qǐng)你求出A,B之間所掛彩旗的長(zhǎng)度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品廠生產(chǎn)一種半成品食材,成本為2/千克,每天的產(chǎn)量(百千克)與銷售價(jià)格(元/千克)滿足函數(shù)關(guān)系式,從市場(chǎng)反饋的信息發(fā)現(xiàn),該半成品食材每天的市場(chǎng)需求量(百千克)與銷售價(jià)格(元/千克)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:

銷售價(jià)格(元/千克)

2

4

……

10

市場(chǎng)需求量(百千克)

12

10

……

4

已知按物價(jià)部門(mén)規(guī)定銷售價(jià)格不低于2/千克且不高于10/千克.

1)直接寫(xiě)出的函數(shù)關(guān)系式,并注明自變量的取值范圍;

2)當(dāng)每天的產(chǎn)量小于或等于市場(chǎng)需求量時(shí),這種半成品食材能全部售出,而當(dāng)每天的產(chǎn)量大于市場(chǎng)需求量時(shí),只能售出符合市場(chǎng)需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄.

①當(dāng)每天的半成品食材能全部售出時(shí),求的取值范圍;

②求廠家每天獲得的利潤(rùn)y(百元)與銷售價(jià)格的函數(shù)關(guān)系式;

3)在(2)的條件下,當(dāng)______/千克時(shí),利潤(rùn)有最大值;若要使每天的利潤(rùn)不低于24(百元),并盡可能地減少半成品食材的浪費(fèi),則應(yīng)定為______/千克.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某出租公司有若干輛同一型號(hào)的貨車對(duì)外出租,每輛貨車的日租金實(shí)行淡季、旺季兩種價(jià)格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計(jì),淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.

1)該出租公司這批對(duì)外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?

2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會(huì)減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時(shí),該出租公司的日租金總收入最高?

查看答案和解析>>

同步練習(xí)冊(cè)答案