【題目】如圖,在中,,是邊上的中點(diǎn),是邊上任意一點(diǎn),且.若點(diǎn)關(guān)于直線的對稱點(diǎn)恰好落在的中位線上,則__________.
【答案】或
【解析】
取BC、AB的中點(diǎn)H、G,連接MH、HG、MG.分三種情形:①如圖1中,當(dāng)點(diǎn)C′落在MH上時(shí);②如圖2中,當(dāng)點(diǎn)C′落在GH上時(shí);③如圖3中,當(dāng)點(diǎn)C′落在直線GM上時(shí),分別求解即可解決問題.
∵
∴AB=20,
取BC、AB的中點(diǎn)H、G,連接MH、HG、MG.
如圖1中,當(dāng)點(diǎn)C′落在MH上時(shí),設(shè)NC=NC′=x,
∵MH是△ABC的中位線,
∴MC=MC′=8,MH=10,
∴ HC′=10-8=2,HN=6-x,
在Rt△HNC′中,∵HN2=HC′2+NC′2,
∴(6-x)2=x2+22,
解得x=.
如圖2中,當(dāng)點(diǎn)C′落在GH上時(shí),設(shè)NC=NC′=x,
在Rt△GMC′中,MG=CH=6,MC=MC′=8,
∴GC′=,
∵∠NHC'=∠C'GM=90°,∠NC'M=90°,
∴∠HNC'+∠HC'N=∠GC'M+∠HC'N=90°,
∴∠HNC'=∠CGC'M,
∴△HNC′∽△GC′M,
∴,
∴,
∴.
如圖3中,當(dāng)點(diǎn)C′落在直線GM上時(shí),易證四邊形MCNC′是正方形,可得CN=CM=8.
∴C'M>GM,
此時(shí)點(diǎn)C′在中位線GM的延長線上,不符合題意.
綜上所述,滿足條件的線段CN的長為或.
故答案為:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22017的值.
解:設(shè)S=1+2+22+23+24+…+22017,
將等式兩邊同時(shí)乘以2得,2S=2+22+23+24+25+…+22017+22018,
將下式減去上式得:2S-S=22018-1,即S=22018-1,
所以1+2+22+23+24+…+2201722018-1,
請你依照此法計(jì)算:
(1)1+2+22+23+24+…+29;
(2)1+5+52+53+54+…+5n(其中n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB,AD的長是關(guān)于x的方程x2﹣mx+﹣=0的兩個實(shí)數(shù)根.
(1)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E分別在BC、AB上,且∠BDE=∠CAD.
(1)求證:△BDE∽△CAD;
(2)求證:△ADE∽△ABD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,AC為⊙O的弦,過⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長交AB的延長線于點(diǎn)P,且∠D=2∠A,作CH⊥AB于點(diǎn)H.
(1)判斷直線DC與⊙O的位置關(guān)系,并說明理由;
(2)若HB=2,cosD=,請求出AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,是平面內(nèi)不與點(diǎn)重合的任意一點(diǎn),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接是的中點(diǎn),是的中點(diǎn).
(1)問題發(fā)現(xiàn):
如圖1,當(dāng)時(shí),的值是_________,直線與直線相交所成的較小角的度數(shù)是________.
(2)類比探究:
如圖2,當(dāng)時(shí),請寫出的值及直線與直線相交所成的較小角的度數(shù),并說明理由.
(3)解決問題:
如圖3,當(dāng)時(shí),若是的中點(diǎn),點(diǎn)在直線上,且點(diǎn)在同一條直線上,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明,小亮都想去觀看電影,但是只有一張電影票,他們決定采取抽卡片的辦法確定誰去,規(guī)定如下:將正面分別標(biāo)有數(shù)字,,的三張卡片(除數(shù)字外其余都同)洗勻后背面朝上放置在桌面上,隨機(jī)抽出一張記下數(shù)字后放回,重新洗勻后背面朝上放置在桌面上,再隨機(jī)抽出一張記下數(shù)字,如果兩個數(shù)字的積為奇數(shù),則小明去;如果兩個數(shù)字的積為偶數(shù),則小亮去.
(1)請用列表或樹狀圖的方法表示抽出的兩張卡片上的數(shù)字積的所有可能出現(xiàn)的結(jié)果;
(2)你認(rèn)為這個規(guī)則公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個動點(diǎn),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D變化的過程中,線段BE的最小值是( )
A.2.5B.C.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(3,0),B(﹣1,0),C(0,﹣3).
(1)求該拋物線的解析式;
(2)若以點(diǎn)A為圓心的圓與直線BC相切于點(diǎn)M,求切點(diǎn)M的坐標(biāo);
(3)若點(diǎn)Q在x軸上,點(diǎn)P在拋物線上,是否存在以點(diǎn)B,C,Q,P為頂點(diǎn)的四邊形是平行四邊形?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com