【題目】如圖,在矩形ABCD中,AB=2,AD=4,點E是BC邊上一個動點,連接AE,作DF⊥AE于點F,當(dāng)BE的長為_____________________時,△CDF是等腰三角形.
【答案】2或2或4﹣2.
【解析】
試題分析:①CF=CD時,過點C作CM⊥DF,垂足為點M,則CM∥AE,DM=MF,延長CM交AD于點G,∴AG=GD=2,∴CE=2,∴當(dāng)BE=2時,△CDF是等腰三角形;
②DF=DC時,則DF=DC=AB=2,∵DF⊥AE,AD=2,∴∠DAE=45°,則BE=2,∴當(dāng)BE=2時,△CDF是等腰三角形;
③FD=FC時,則點F在CD的垂直平分線上,故F為AE中點.∵AB=2,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,即,解得:x=4﹣2或x=4+2(舍去);∴當(dāng)BE=4﹣2時,△CDF是等腰三角形.綜上,當(dāng)BE=2或2或4﹣2 時,△CDF是等腰三角形.故答案為:2或2或4﹣2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到三角形三條邊的距離都相等的點是這個三角形的( )
A.三條中線的交點
B.三條角平分線的交點
C.三條邊的垂直平分線的交點
D.三條高的交點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E、F分別是邊BC、AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關(guān)系和位置關(guān)系;(不要求證明)
(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請給出判斷并予以證明;
(3)如圖3,若點E、F分別是BC、AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線p:y=ax2+bx+c的頂點為C,與x軸相交于A、B兩點(點A在點B左側(cè)),點C關(guān)于x軸的對稱點為C′,我們稱以A為頂點且過點C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是y=x2+2x+1和y=2x+2,則這條拋物線的解析式為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,二次函數(shù)≠0的圖像經(jīng)過點(3,5)、(2,8)、(0,8).
①求這個二次函數(shù)的解析式;
②已知拋物線≠0,≠0,且滿足≠0,1,則我們稱拋物線互為“友好拋物線”,請寫出當(dāng)時第①小題中的拋物線的友好拋物線,并求出這“友好拋物線”的頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用-a表示的數(shù)一定是( )
A. 負(fù)數(shù) B. 負(fù)整數(shù)
C. 正數(shù)或負(fù)數(shù)或0 D. 以上結(jié)論都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為實施國家“營養(yǎng)早餐”工程,食堂用甲、乙兩種原料配制成某種營養(yǎng)食品,已知這兩種原料的維生素c含量及購買這兩種原料的價格如下表:
現(xiàn)要配制這種營養(yǎng)食品20 千克,要求每千克至少含有480 單位的維生素c,設(shè)購買甲種原料x千克.
(1)至少需要購買甲種原料多少千克?
(2)設(shè)食堂用于購買這兩種原料的總費用為y 元,求 y與x的函數(shù)關(guān)系式,并說明購買甲種原料多少千克時,總費用最少。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com