如圖,△ABC是⊙O的內(nèi)接三角形,AC=BC,D為⊙O中上一點,延長DA至點E,使CE=CD.
(1)求證:AE=BD;
(2)若AC⊥BC,求證:AD+BD=CD.

【答案】分析:(1)根據(jù)同弧上的圓周角相等,得∠CBA=∠CDE,則∠ACB=∠ECD,可證明△ACE≌△BCD,則AE=BD;
(2)根據(jù)已知條件得,∠CED=∠CDE=45°,則DE=CD,從而證出結(jié)論.
解答:證明:(1)在△ABC中,∠CAB=∠CBA.
在△ECD中,∠E=∠CDE.
∵∠CBA=∠CDE,(同弧上的圓周角相等),
∴∠E=∠CDE=∠CAB=∠CBA,
∵∠E+∠ECD+∠EDC=180°,∠CAB+∠ACB+∠ABC=180°,
∴∠ACB=∠ECD,
∴∠ACB-∠ACD=∠ECD-∠ACD.
∴∠ACE=∠BCD,
在△ACE和△BCD中,∠ACE=∠BCD;CE=CD;AC=BC,
∴△ACE≌△BCD.
∴AE=BD;

(2)若AC⊥BC,∵∠ACB=∠ECD.
∴∠ECD=90°,
∴∠CED=∠CDE=45°,
,
又∵AD+BD=AD+EA=ED,
∴AD+BD=CD.
點評:本題是一道綜合題,考查了圓周角定理和全等三角形的判定和性質(zhì),解答這類題一些學(xué)生不會綜合運用所學(xué)知識解答問題,不知從何處入手造成錯解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長為2的等邊三角形,將△ABC沿射線BC向右平移到△DCE,連接AD、BD,下列結(jié)論錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是銳角三角形,以BC為直徑作⊙O,AD是⊙O的切線,從AB上一點E作AB的垂線交AC的延長線于F,若
AB
AF
=
AE
AC

求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點O順時針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點M,N,DF交AC于點Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長等于AC的長;④NQ=QC.其中正確的結(jié)論是
①②③
①②③
.(把所有正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D是BC邊的中點,點E在AC的延長線上,且∠CDE=30°.若AD=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,則∠ABD=
120
120
度.

查看答案和解析>>

同步練習(xí)冊答案