如圖,已知四邊形ABCD是平行四邊形,P、Q是對角線BD上的兩個(gè)點(diǎn),且AP∥QC.求證:BP=DQ.
見解析
【解析】
試題分析:根據(jù)平行線的性質(zhì)可得出∠APB=∠CQD,∠ABP=∠CDQ,繼而根據(jù)平行四邊形的對邊相等的性質(zhì)可得出AB=CD,進(jìn)而可證明△ABP≌△CDQ,也即可得出結(jié)論.
證明:∵AP∥CQ,
∴∠APD=∠CQB,
∴∠APB=∠CQD,
∵四邊形ABCD是平行四邊形,
∴AB=CD,
∴AB∥CD,
∴∠ABP=∠CDQ,
在△ABP和△CDQ中,,
∴△ABP≌△CDQ,
∴BP=DQ.
點(diǎn)評:此題考查了平行四邊形的性質(zhì)、全等三角形的性質(zhì)及判定,解答本題的關(guān)鍵是掌握平行四邊形對邊相等的性質(zhì),難度一般.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BDC |
BF |
AD |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047
如圖,已知四邊形AB∥CD是菱形,DE⊥AB,DF⊥BC.求證△ADE≌△CDF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com