【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點A,D在x軸的正半軸,點C在y軸的正半軸上,點F再AB上,點B,E在反比例函數(shù)y=的圖象上,OA=2,OC=6,則正方形ADEF的邊長為______.
【答案】﹣1
【解析】
先確定B點坐標(2,6),根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=12,則反比例函數(shù)解析式為y=,設AD=t,則OD=2+t,所以E點坐標為(2+t,t),再根據(jù)反比例函數(shù)圖象上點的坐標特征得(2+t)t=12,利用因式分解法可求出t的值.
∵OA=2,OC=6,
∴B點坐標為(2,6),
∴k=2×6=12,
∴反比例函數(shù)解析式為y=,
設AD=t,則OD=2+t,
∴E點坐標為(2+t,t),
∴(2+t)t=12,
整理為t2+2t12=0,
解得t1=1+,t2=-1-,
∴正方形ADEF的邊長為﹣1.
故答案為:﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】星光櫥具店購進電飯煲和電壓鍋兩種電器進行銷售,其進價與售價如表:
進價(元/個) | 售價(元/個) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,櫥具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度櫥具店決定用不超過9000元的資金采購電飯煲和電壓鍋共50個,且電飯煲的數(shù)量不少于23個,問櫥具店有哪幾種進貨方案?并說明理由;
(3)在(2)的條件下,請你通過計算判斷,哪種進貨方案櫥具店賺錢最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于整式(其中m是大于的整數(shù)).
(1)若,且該整式是關于x的三次三項式,求m的值;
(2)若該整式是關于x的二次單項式,求m,n的值;
(3)若該整式是關于x的二次二項式,則m,n要滿足什么條件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線a∥b,依次有3個三角形放置在上面,它們分別是等邊三角形、等腰直角三角形、含30°角的直角三角形,直接填寫出∠1、∠2、∠3 的度數(shù).
∠1= °;∠2= °;∠3= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形中心在原點,且頂點的坐標為.動點分別從點同時出發(fā),繞著正方形的邊按順時針方向運動,當點回到點時兩點同時停止運動,運動時間為秒.連接,線段、與正方形的邊圍成的面積較小部分的圖形記為.
(1)請寫出點的坐標.
(2)若的速度均為1個單位長度秒,試判斷在運動過程中,的面積是否發(fā)生變化,如果不變求出該值,如果變化說明理由.
(3)若點速度為2個單位長度秒,點為1個單位長度/秒,當的面積為時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連CE,則線段CE的長等于( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于點E,且四邊形ABCD的面積為144,則BE________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖反映的過程是小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,其中x表示時間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上,根據(jù)圖中提供的信息,下列說法正確的是( )
A.食堂離小明家2.4km
B.小明在圖書館呆了20min
C.小明從圖書館回家的平均速度是0.04km/min
D.圖書館在小明家和食堂之間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時,AB寬20 m,水位上升到警戒線CD時,CD到拱橋頂E的距離僅為1 m,這時水面寬度為10 m.
(1)在如圖所示的坐標系中求拋物線的解析式;
(2)若洪水到來時,水位以每小時0.3 m的速度上升,從正常水位開始,持續(xù)多少小時到達警戒線?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com