【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)△ABC(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)的頂點(diǎn)A、C的坐標(biāo)分別為A(﹣3,4)C(0,2)
(1)請?jiān)诰W(wǎng)格所在的平面內(nèi)建立平面直角坐標(biāo)系,并寫出點(diǎn)B的坐標(biāo);
(2)畫出△ABC關(guān)于原點(diǎn)對稱的圖形△A1B1C1;
(3)求△ABC的面積;
(4)在x軸上存在一點(diǎn)P,使PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)坐標(biāo)系詳見解析,點(diǎn)B的坐標(biāo)(﹣2,0);(2)詳見解析;(3)5;(4)點(diǎn)P的坐標(biāo)(﹣2,0).
【解析】
(1)根據(jù)A、C點(diǎn)坐標(biāo),作出的平面直角坐標(biāo)系即可,根據(jù)作出的平面直角坐標(biāo)系寫出B點(diǎn)的坐標(biāo)即可;
(2)根據(jù)原點(diǎn)對稱的特點(diǎn)畫出圖形即可;
(3)利用矩形面積減去周圍三角形面積得出即可;
(4)根據(jù)軸對稱的性質(zhì)解答即可.
解:(1)如圖所示:
點(diǎn)B的坐標(biāo)(-2,0);
(2)如圖所示,△A1B1C1即為所求;
(3)△ABC的面積=5;
(4)點(diǎn)P的坐標(biāo)(-2,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD⊥BC于點(diǎn)D,D為BC的中點(diǎn),連接AB,∠ABC的平分線交AD于點(diǎn)O,連結(jié)OC,若∠AOC=125°,則∠ABC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠B=120°,點(diǎn)M是AD的中點(diǎn),點(diǎn)P由點(diǎn)A出發(fā),沿A→B→C→D作勻速運(yùn)動(dòng),到達(dá)點(diǎn)D停止,則△APM的面積y與點(diǎn)P經(jīng)過的路程x之間的函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,二次函數(shù)y=ax2﹣a(b﹣1)x﹣ab(其中b<﹣1)的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C(0,1),過點(diǎn)C的直線交x軸于點(diǎn)D(2,0),交拋物線于另一點(diǎn)E.
(1)用b的代數(shù)式表示a,則a=;
(2)過點(diǎn)A作直線CD的垂線AH,垂足為點(diǎn)H.若點(diǎn)H恰好在拋物線的對稱軸上,求該二次函數(shù)的表達(dá)式;
(3)如圖②,在(2)的條件下,點(diǎn)P是x軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),OP=m.在點(diǎn)P左側(cè)的x軸上取點(diǎn)F,使PF=1.過點(diǎn)P作PQ⊥x軸,交線段CE于點(diǎn)Q,延長線段PQ到點(diǎn)G,連接EG、DG.若tan∠GDP=tan∠FQP+tan∠QDP,試判斷是否存在m的值,使△FPQ的面積和△EGQ的面積相等?若存在求出m的值,若不存在則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個(gè)單位,得到矩形A1B1C1D1 , 第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到矩形A2B2C2D2…,第n次平移將矩形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5個(gè)單位,得到矩形AnBnCnDn(n>2).
(1)求AB1和AB2的長.
(2)若ABn的長為56,求n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=120°,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AB上的一點(diǎn),點(diǎn)F是AC上的一點(diǎn),∠EDF=90°,且BE=2,F(xiàn)C=7,則EF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求這塊草坪的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y1=﹣x+4的圖象與函數(shù)y2= (x>0)的圖象交于A(a,1)、B(1,b)兩點(diǎn).
(1)求函數(shù)y2的表達(dá)式;
(2)觀察圖象,比較當(dāng)x>0時(shí),y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)家為了推測最適合某種珍奇植物生長的溫度,將這種植物分別放在不同溫度的環(huán)境中,經(jīng)過一定時(shí)間后,測試出這種植物高度的增長情況,部分?jǐn)?shù)據(jù)如表:
溫度t/℃ | ﹣4 | ﹣2 | 0 | 1 | 4 |
植物高度增長量l/mm | 41 | 49 | 49 | 46 | 25 |
科學(xué)家經(jīng)過猜想、推測出l與t之間是二次函數(shù)關(guān)系.由此可以推測最適合這種植物生長的溫度為℃.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com