【題目】1)如圖,若,將點(diǎn)內(nèi)部,∠,∠,∠滿足的數(shù)量關(guān)系是   ,并說(shuō)明理由.

(2)在如圖1中,將直線繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)一定角度交直線于點(diǎn),如圖2,利用(1)中的結(jié)論(可以直接套用),求∠﹑∠﹑∠﹑∠之間有何數(shù)量關(guān)系?

(3)科技活動(dòng)課上,雨軒同學(xué)制作了一個(gè)圖(3)的“飛旋鏢”,經(jīng)測(cè)量發(fā)現(xiàn)∠°,∠°,則∠與∠的數(shù)量關(guān)系是 .

【答案】(1)∠P=∠B+∠D(2)∠P=∠B+∠D+∠BQD(3)∠APB=∠C+65°

【解析】

1)過(guò)P作平行于AB的直線,根據(jù)內(nèi)錯(cuò)角相等可得出三個(gè)角的關(guān)系.
2)連接QP并延長(zhǎng)至F,根據(jù)三角形的外角性質(zhì)可得∠BPD﹑∠B﹑∠D﹑∠BQD的關(guān)系;
3)連接CP并延長(zhǎng)至G,根據(jù)三角形的外角性質(zhì)可得∠APB﹑∠B﹑∠A﹑∠ACB的關(guān)系,代入即可.

解:(1)∠BPD=B+D,如圖1,過(guò)P點(diǎn)作PEAB,


ABCD
CDPEAB,
∴∠BPE=B,∠EPD=D,
∵∠BPD=BPE+EPD,
∴∠BPD=B+D
故答案為:∠BPD=B+D;
2)∠BPD=B+D+BQD,連接QP并延長(zhǎng)至F,如圖2


∵∠BPF=ABP+BAP,∠FPD=PDQ+PQD
∴∠BPD=B+D+BQD;
3)∠APB=65°+ACB,連接CP并延長(zhǎng)至G,如圖3,


∵∠APG=A+ACP,∠BPG=B+BCP,
∴∠APB=B+A+ACB
∵∠A=30°,∠B=35°,
∴∠APB=65°+ACB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA、OB相交于點(diǎn)C、D,問(wèn)PCPD相等嗎?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù) 的圖像經(jīng)過(guò)點(diǎn)A(-1,-1)和點(diǎn)B(3,-9).

(1)求該二次函數(shù)的表達(dá)式;
(2)寫(xiě)出該拋物線的對(duì)稱軸及頂點(diǎn)坐標(biāo);
(3)點(diǎn)Pm , m)與點(diǎn)Q均在該函數(shù)圖像上(其中m>0),且這兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,求m的值及點(diǎn)Q x軸的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程組:

1 (2) (3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《朗讀者》節(jié)目的影響下,某中學(xué)開(kāi)展了好書(shū)伴我成長(zhǎng)讀書(shū)活動(dòng).為了解5月份八年級(jí)300名學(xué)生的讀書(shū)情況,隨機(jī)調(diào)查了八年級(jí)50名學(xué)生讀書(shū)的冊(cè)數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表所示:

冊(cè)數(shù)

0

1

2

3

4

人數(shù)

3

13

16

17

1

關(guān)于這組數(shù)據(jù),下列說(shuō)法正確的是 ( )

A. 中位數(shù)是2 B. 眾數(shù)是17 C. 平均數(shù)是3 D. 方差是2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著市民環(huán)保意識(shí)的增強(qiáng),節(jié)慶期間煙花爆竹銷售量逐年下降.某市2012年銷售煙花爆竹20萬(wàn)箱,到2014年煙花爆竹銷售量為9.8萬(wàn)箱.求該市2012年到2014年煙花爆竹年銷售量的平均下降率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過(guò)點(diǎn)D。

(1)求證:BC是⊙O切線;
(2)若BD=5, DC=3,求AC的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在山頂上有一座電視塔,在塔頂B處,測(cè)得地面上一點(diǎn)A的俯角α=60°,在塔底C處測(cè)得的俯角β=45°,已知BC=60m,求山高CD(精確到1m, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:(不寫(xiě)作法,但必須保留作圖痕跡)

如圖:某地有兩所大學(xué)和兩條相交叉的公路,(點(diǎn)M,N表示大學(xué),AO,BO表示公路).現(xiàn)計(jì)劃修建一座物資倉(cāng)庫(kù),希望倉(cāng)庫(kù)到兩所大學(xué)的距離相等,到兩條公路的距離也相等.你能確定倉(cāng)庫(kù)P應(yīng)該建在什么位置嗎?在所給的圖形中畫(huà)出你的設(shè)計(jì)方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案